• Title/Summary/Keyword: intelligent behavior

Search Result 683, Processing Time 0.026 seconds

Model-based Specification of Non-functional Requirements in the Environment of Real-time Collaboration Among Multiple Cyber Physical Systems (사이버 물리 시스템의 실시간 협업 환경에서 소프트웨어 비기능 요구사항의 모델 기반 명세)

  • Nam, Seungwoo;Hong, Jang-Eui
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • Due to the advent of the 4th Industrial Revolution, it is imperative that we aggressively continue to develop state-of-the-art, cutting edge ICT technology relative to autonomous vehicles, intelligent robots, and so forth. Especially, systems based on convergence IT are being developed in the form of CPSs (Cyber Physical Systems) that interwork with sensors and actuators. Since conventional CPS specification only expresses behavior of one system, specification for collaboration and diversity of CPS systems with characteristics of hyper-connectivity and hyper-convergence in the 4th Industrial Revolution has been insufficiently presented. Additionally, behavioral modeling of CPSs that considers more collaborative characteristics has been unachieved in real-time application domains. This study defines the non-functional requirements that should be identified in developing embedded software for real-time constrained collaborating CPSs. These requirements are derived from ISO 25010 standard and formally specified based on state-based timed process. Defined non-functional requirements may be reused to develop the requirements for new embedded software for CPS, that may lead to quality improvement of CPS.

Balanced Scorecard using System Dynamics for Evaluating IT Investment (IT 투자 평가를 위한 시스템 다이나믹스를 활용한 밸런스스코어카드)

  • Baek, Sung-Won;Ju, Jung-Eun;Koo, Sang-Hoe
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.19-34
    • /
    • 2008
  • IT investment is usually very costly and takes a long time to get the results out of investment. However, most of currently available evaluation methods for IT investment are based upon short-term effects, hence their results are not fully trustworthy. In addition, those methods commonly consider only financial aspects such as ROI. For more reliable evaluation, it is necessary to consider non-financial factors such as system utilization, customer satisfaction, public relations, and so on, as well as financial factors. In this research, we propose an evaluation method that can evaluate both financial and non-financial aspects on a long-term base. For this purpose, we employed the research results developed in System dynamics and Balanced scorecard. System dynamics is useful in analyzing long term behavior of a given system, and Balanced scorecard is useful for evaluating both financial and non-financial aspects. We demonstrated the usefulness of our method by applying it to the evaluation of RFID (Radio Frequency Identification) investment in a distribution and retail industry. From this application, we found that RFID investment may not be rewarding in the short term, but is sure to be returning the income relative to its investment in the long run.

  • PDF

A Comparative Analysis of the Changes in Perception of the Fourth Industrial Revolution: Focusing on Analyzing Social Media Data (4차 산업혁명에 대한 인식 변화 비교 분석: 소셜 미디어 데이터 분석을 중심으로)

  • You, Jae Eun;Choi, Jong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.11
    • /
    • pp.367-376
    • /
    • 2020
  • The fourth industrial revolution will greatly contribute to the entry of objects into an intelligent society through technologies such as big data and an artificial intelligence. Through the revolution, we were able to understand human behavior and awareness, and through the use of an artificial intelligence, we established ourselves as a key tool in various fields such as medicine and science. However, the fourth industrial revolution has a negative side with a positive future. In this study, an analysis was conducted using text mining techniques based on unstructured big data collected through social media. We wanted to look at keywords related to the fourth industrial revolution by year (2016, 2017 and 2018) and understand the meaning of each keyword. In addition, we understood how the keywords related to the Fourth Industrial Revolution changed with the change of the year and wanted to use R to conduct a Keyword Analysis to identify the recognition flow closely related to the Fourth Industrial Revolution through the keyword flow associated with the Fourth Industrial Revolution. Finally, people's perceptions of the fourth industrial revolution were identified by looking at the positive and negative feelings related to the fourth industrial revolution by year. The analysis showed that negative opinions were declining year after year, with more positive outlook and future.

Security Credential Management & Pilot Policy of U.S. Government in Intelligent Transport Environment (지능형 교통 환경에서 미국정부의 보안인증관리 & Pilot 정책)

  • Hong, Jin-Keun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.13-19
    • /
    • 2019
  • This paper analyzed the SCMS and pilot policy, which is pursued by the U.S. government in connected vehicles. SCMS ensures authentication, integrity, privacy and interoperability. The SCMS Support Committee of U.S. government has established the National Unit SCMS and is responsible for system-wide control. Of course, it introduces security policy, procedures and training programs making. In this paper, the need for SCMS to be applied to C-ITS was discussed. The structure of the SCMS was analyzed and the U.S. government's filot policy for connected vehicles was discussed. The discussion of the need for SCMS highlighted the importance of the role and responsibilities of SCMS between vehicles and vehicles. The security certificate management system looked at the structure and analyzed the type of certificate used in the vehicle or road side unit (RSU). The functions and characteristics of the certificates were reviewed. In addition, the functions of basic safety messages were analyzed with consideration of the detection and warning functions of abnormal behavior in SCMS. Finally, the status of the pilot project for connected vehicles currently being pursued by the U.S. government was analyzed. In addition to the environment used for the test, the relevant messages were also discussed. We also looked at some of the issues that arise in the course of the pilot project.

A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D information (RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정 방법)

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.41-51
    • /
    • 2018
  • Recently, in the field of video surveillance, deep learning based learning method is applied to intelligent video surveillance system, and various events such as crime, fire, and abnormal phenomenon can be robustly detected. However, since occlusion occurs due to the loss of 3d information generated by projecting the 3d real-world in 2d image, it is need to consider the occlusion problem in order to accurately detect the object and to estimate the pose. Therefore, in this paper, we detect moving objects by solving the occlusion problem of object detection process by adding depth information to existing RGB information. Then, using the convolution neural network in the detected region, the positions of the 14 keypoints of the human joint region can be predicted. Finally, in order to solve the self-occlusion problem occurring in the pose estimation process, the method for 3d human pose estimation is described by extending the range of estimation to the 3d space using the predicted result of 2d keypoint and the deep neural network. In the future, the result of 2d and 3d pose estimation of this research can be used as easy data for future human behavior recognition and contribute to the development of industrial technology.

The Effect of Changes in Airbnb Host's Marketing Strategy on Listing Performance in the COVID-19 Pandemic (COVID-19 팬데믹에서 Airbnb 호스트의 마케팅 전략의 변화가 공유성과에 미치는 영향)

  • Kim, So Yeong;Sim, Ji Hwan;Chung, Yeo Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.1-27
    • /
    • 2021
  • The entire tourism industry is being hit hard by the COVID-19 as a global pandemic. Accommodation sharing services such as Airbnb, which have recently expanded due to the spread of the sharing economy, are particularly affected by the pandemic because transactions are made based on trust and communication between consumer and supplier. As the pandemic situation changes individuals' perceptions and behavior of travel, strategies for the recovery of the tourism industry have been discussed. However, since most studies present macro strategies in terms of traditional lodging providers and the government, there is a significant lack of discussion on differentiated pandemic response strategies considering the peculiarity of the sharing economy centered on peer-to-peer transactions. This study discusses the marketing strategy for individual hosts of Airbnb during COVID-19. We empirically analyze the effect of changes in listing descriptions posted by the Airbnb hosts on listing performance after COVID-19 was outbroken. We extract nine aspects described in the listing descriptions using the Attention-Based Aspect Extraction model, which is a deep learning-based aspect extraction method. We model the effect of aspect changes on listing performance after the COVID-19 by observing the frequency of each aspect appeared in the text. In addition, we compare those effects across the types of Airbnb listing. Through this, this study presents an idea for a pandemic crisis response strategy that individual service providers of accommodation sharing services can take depending on the listing type.

Artificial Intelligence-based Security Control Construction and Countermeasures (인공지능기반 보안관제 구축 및 대응 방안)

  • Hong, Jun-Hyeok;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.531-540
    • /
    • 2021
  • As cyber attacks and crimes increase exponentially and hacking attacks become more intelligent and advanced, hacking attack methods and routes are evolving unpredictably and in real time. In order to reinforce the enemy's responsiveness, this study aims to propose a method for developing an artificial intelligence-based security control platform by building a next-generation security system using artificial intelligence to respond by self-learning, monitoring abnormal signs and blocking attacks.The artificial intelligence-based security control platform should be developed as the basis for data collection, data analysis, next-generation security system operation, and security system management. Big data base and control system, data collection step through external threat information, data analysis step of pre-processing and formalizing the collected data to perform positive/false detection and abnormal behavior analysis through deep learning-based algorithm, and analyzed data Through the operation of a security system of prevention, control, response, analysis, and organic circulation structure, the next generation security system to increase the scope and speed of handling new threats and to reinforce the identification of normal and abnormal behaviors, and management of the security threat response system, Harmful IP management, detection policy management, security business legal system management. Through this, we are trying to find a way to comprehensively analyze vast amounts of data and to respond preemptively in a short time.

Applying a smart livestock system as a development strategy for the animal life industry in the future: A review (미래 동물생명산업 발전전략으로써 스마트축산의 응용: 리뷰)

  • Park, Sang-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.241-262
    • /
    • 2021
  • This paper reviewed the necessity of a information and communication technology (ICT)-based smart livestock system as a development strategy for the animal life industry in the future. It also predicted the trends of livestock and animal food until 2050, 30 years later. Worldwide, livestock raising and consumption of animal food are rapidly changing in response to population growth, aging, reduction of agriculture population, urbanization, and income growth. Climate change can change the environment and livestock's productivity and reproductive efficiencies. Livestock production can lead to increased greenhouse gas emissions, land degradation, water pollution, animal welfare, and human health problems. To solve these issues, there is a need for a preemptive future response strategy to respond to climate change, improve productivity, animal welfare, and nutritional quality of animal foods, and prevent animal diseases using ICT-based smart livestock system fused with the 4th industrial revolution in various aspects of the animal life industry. The animal life industry of the future needs to integrate automation to improve sustainability and production efficiency. In the digital age, intelligent precision animal feeding with IoT (internet of things) and big data, ICT-based smart livestock system can collect, process, and analyze data from various sources in the animal life industry. It is composed of a digital system that can precisely remote control environmental parameters inside and outside the animal husbandry. The ICT-based smart livestock system can also be used for monitoring animal behavior and welfare, and feeding management of livestock using sensing technology for remote control through the Internet and mobile phones. It can be helpful in the collection, storage, retrieval, and dissemination of a wide range of information that farmers need. It can provide new information services to farmers.

Analysis of public opinion in the 20th presidential election using YouTube data (유튜브 데이터를 활용한 20대 대선 여론분석)

  • Kang, Eunkyung;Yang, Seonuk;Kwon, Jiyoon;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.161-183
    • /
    • 2022
  • Opinion polls have become a powerful means for election campaigns and one of the most important subjects in the media in that they predict the actual election results and influence people's voting behavior. However, the more active the polls, the more often they fail to properly reflect the voters' minds in measuring the effectiveness of election campaigns, such as repeatedly conducting polls on the likelihood of winning or support rather than verifying the pledges and policies of candidates. Even if the poor predictions of the election results of the polls have undermined the authority of the press, people cannot easily let go of their interest in polls because there is no clear alternative to answer the instinctive question of which candidate will ultimately win. In this regard, we attempt to retrospectively grasp public opinion on the 20th presidential election by applying the 'YouTube Analysis' function of Sometrend, which provides an environment for discovering insights through online big data. Through this study, it is confirmed that a result close to the actual public opinion (or opinion poll results) can be easily derived with simple YouTube data results, and a high-performance public opinion prediction model can be built.

RPA Log Mining-based Process Automation Status Analysis - An Empirical Study on SMEs (RPA 로그 마이닝 기반 프로세스 자동화 현황 분석 - 중소기업대상 실증 연구)

  • Young Sik Kang;Jinwoo Jung;Seonyoung Shim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.265-288
    • /
    • 2023
  • Process mining has generally analyzed the default logs of Information Systems such as SAP ERP, but as the use of automation software called RPA expands, the logs by RPA bots can be utilized. In this study, the actual status of RPA automation in the field was identified by applying RPA bots to the work of three domestic manufacturing companies (cosmetic field) and analyzing them after leaving logs. Using Uipath and Python, we implemented RPA bots and wrote logs. We used Disco, a software dedicated to process mining to analyze the bot logs. As a result of log analysis in two aspects of bot utilization and performance through process mining, improvement requirements were found. In particular, we found that there was a point of improvement in all cases in that the utilization of the bot and errors or exceptions were found in many cases of process. Our approach is very scientific and empirical in that it analyzes the automation status and performance of bots using data rather than existing qualitative methods such as surveys or interviews. Furthermore, our study will be a meaningful basic step for bot behavior optimization, and can be seen as the foundation for ultimately performing process management.