• Title/Summary/Keyword: intelligence profile

Search Result 83, Processing Time 0.022 seconds

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Quantitative Expression Analysis of Functional Genes in Four Dog Breeds (개의 네 품종에서 기능 유전자들에 대한 정량적 발현 분석)

  • Gim, Jeong-An;Kim, Sang-Hoon;Lee, Hee-Eun;Jeong, Hoim;Nam, Gyu-Hwi;Kim, Min Kyu;Huh, Jae-Won;Choi, Bong-Hwan;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.861-869
    • /
    • 2015
  • One of the domesticated species; the dog has been selectively bred for various aims by human. The dog has many breeds, which are artificially selected for specific behaviors and morphologies. Dogs contribute their life to human as working dogs for guide, rescue, detection or etc. Working dogs requires good personality, such as gentleness, robustness and patience for performing their special duty. Many studies have concentrated on finding genetic marker for selecting the high-quality working dog. In this study, we confirmed quantitative expression patterns of eight genes (ABAT; 4-Aminobutyrate Aminotransferase, PLCB1; Phospholipase C, Beta 1, SLC10A4; Solute Carrier Family 10, Member 4, WNT1; Wingless-Type MMTV Integration Site Family, Member 1, BARX2; BarH-Like Homeobox 2, NEUROD6; Neuronal Differentiation 6, SEPT9; Septin 9 and TBR1; T-Box, Brain, 1) among brains tissues from four dog breeds (Beagle, Sapsaree, Shepherd and Jindo), because these genes were expressed and have functions in brain mostly. Specially, BARX2, SEPT9, SLC10A4, TBR1 and WNT1 genes were highly expressed in Beagle and Jindo, and Sapsaree and German Shepherd were vice versa. The biological significance of total genes was estimated by database for annotation, visualization and integrated discovery (DAVID) to determine a different gene ontology (GO) class. In these analyses, we suppose to these eight genes could provide influential information for brain development, and intelligence of organisms. Taken together, these results could provide clues to discover biomarker related to functional traits in brain, and beneficial for selecting superior working dogs.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

A Comparative Study of Information Delivery Method in Networks According to Off-line Communication (오프라인 커뮤니케이션 유무에 따른 네트워크 별 정보전달 방법 비교 분석)

  • Park, Won-Kuk;Choi, Chan;Moon, Hyun-Sil;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.131-142
    • /
    • 2011
  • In recent years, Social Network Service, which is defined as a web-based service that allows an individual to construct a public or a semi-public profile within a bounded system, articulates a list of other users with whom they share connections, and traverses their list of connections. For example, Facebook and Twitter are the representative sites of Social Network Service, and these sites are the big issue in the world. A lot of people use Social Network Services to connect and maintain social relationship. Recently the users of Social Network Services have increased dramatically. Accordingly, many organizations become interested in Social Network Services as means of marketing, media, communication with their customers, and so on, because social network services can offer a variety of benefits to organizations such as companies and associations. In other words, organizations can use Social Network Services to respond rapidly to various user's behaviors because Social Network Services can make it possible to communicate between the users more easily and faster. And marketing cost of the Social Network Service is lower than that of existing tools such as broadcasts, news papers, and direct mails. In addition, Social network Services are growing in market place. So, the organizations such as companies and associations can acquire potential customers for the future. However, organizations uniformly communicate with users through Social Network Service without consideration of the characteristics of the networks although networks have different effects on information deliveries. For example, members' cohesion in an offline communication is higher than that in an online communication because the members of the offline communication are very close. that is, the network of the offline communication has a strong tie. Accordingly, information delivery is fast in the network of the offline communication. In this study, we compose two networks which have different characteristic of communication in Twitter. First network is constructed with data based on an offline communication such as friend, family, senior and junior in school. Second network is constructed with randomly selected data from users who want to associate with friends in online. Each network size is 250 people who divide with three groups. The first group is an ego which means a person in the center of the network. The second group is the ego's followers. The last group is composed of the ego's follower's followers. We compare the networks through social network analysis and follower's reaction analysis. We investigate density and centrality to analyze the characteristic of each network. And we analyze the follower's reactions such as replies and retweets to find differences of information delivery in each network. Our experiment results indicate that density and centrality of the offline communicationbased network are higher than those of the online-based network. Also the number of replies are larger than that of retweets in the offline communication-based network. On the other hand, the number of retweets are larger than that of replies in the online based network. We identified that the effect of information delivery in the offline communication-based network was different from those in the online communication-based network through experiments. So, you configure the appropriate network types considering the characteristics of the network if you want to use social network as an effective marketing tool.

Counseling Case Study of a Child with Peer Confliction due to Lack of Social Skills and Impulsiveness (사회적 기술 부족과 충동성으로 인해 또래갈등이 심한 분교아동의 상담사례)

  • Lee, In-Sun
    • The Korean Journal of Elementary Counseling
    • /
    • v.5 no.1
    • /
    • pp.227-253
    • /
    • 2006
  • It seems common for students living at a small county and islands to experience psychological conflicts and be unaccustomed in the peer society because they are not familiar with peer interaction and social skills. This is a case study of L (hereinafter called L) who was grown up in the sheltered school at a small county. L was psychologically disturbed because he couldn't get along well in the transferred school. It is the reason why he had lived in the sheltered school at a small county, so he had not enough exposure to interact with peer and social skills. Sometimes he was obstinate irrationally and when he had trouble with friends, he threw something out or went out of school and tricked juniors dangerously. The fact of disperse with families, parent's indifference, and hate of older brother made L to have ill feeling against family. He had low motivation and low self confident in learning because of short attention time and accumulated poor learning progress. In this study, he was evaluated at various area, such as, intelligent, affective, personal and inter-personal, before counselling. To evaluated the effect of the counselling, K-WISC-III, KPRC, sentence filling test, social adaptation ability test, etc, were administered right after the counselling was over and 8 weeks later. For specific information gathering and analysing, observation diary and deepen counselling were accomplished by homeroom teacher, his mother, and his peers. To correct his problematic behaviors, 13 counseling sessions were accomplished for 6 months and those counselling sessions were recorded and analysed definitely. Followings are the result of this case study. First, he was recovered from the anxiety of inter-personal interaction and he started to interact with peers. The result of sac scale score of KPRC profile was lower than before as much as average student after counseling and 8 weeks later. This reveals that the distress against interpersonal relation have settled. Especially, through the result of sentence filing test, he seemed to feel attachment to peers and be positive, active in the relation of peer. For instance, he was active in the open class lesson and interacted well with peers. It could be said that he overcame the psychological distress comparing with previous time. Second, he could apologize to his peer and juniors for his fault. His attitude were well shown in the letter from an old friend at the sheltered school, average KPRC profiling score comparing with previous counseling time, and remarkable decrease of attack scale score of teacher and peer. Third, his view toward family turn out positive. He recognized his situation that he lived apart from family and even worried about his parent's financial difficulty. Through solving the confliction with his older brother, he could acquire the feeling of family reunion. Fourth, his learning motivation and self-confidence were increased. He confirmed his future positively and he might be judged more attentive because his intelligence index was higher than before as much as average student. With the main goal of this study, verification for effectiveness of counseling. understanding and helping problematic students such as L who lives at a small county and island through investigation of their real situation and problems with the method of counseling and socio-cultural analysis is worthwhile. Identification of ideal relationship with peer is related with positive self-conception, harmonic social adaptation and development of child. It is time to investigate easy adaptive in classroom and well-organised program to acquire general social skills for sheltered school students at a small county and islands.

  • PDF

The Effect of Mobile Advertising Platform through Big Data Analytics: Focusing on Advertising, and Media Characteristics (빅데이터 분석을 통한 모바일 광고플랫폼의 광고효과 연구: 광고특성, 매체특성을 중심으로)

  • Bae, Seong Deok;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.37-57
    • /
    • 2018
  • With the spread of smart phones, interest in mobile media is on the increase as useful media recently. Mobile media is assessed as having differentiated advantages from existing media in that not only can they provide consumers with desired information anytime and anywhere but also real-time interaction is possible in them. So far, studies on mobile advertising were mostly researches analyzing satisfaction with, and acceptance of, mobile advertising based on survey, researches focusing on the factors affecting acceptance of mobile advertising messages and researches verifying the effect of mobile advertising on brand recall, advertising attitude and brand attitude through experiments. Most of the domestic mobile advertising studies related to advertisement effect and advertisement attitude have been conducted through experiments and surveys. The advertising effectiveness measure of the mobile ad used the attitude of the advertisement, purchase intention, etc. To date, there have been few studies on the effects of mobile advertising on actual advertising data to prove the characteristics of the advertising platform and to prove the relationship between the factors influencing the advertising effect and the factors. In order to explore advertising effect of mobile advertising platform currently commercialized, this study defined advertising characteristics and media characteristics from the perspective of advertiser, advertising platform and publisher and analyzed the influence of each characteristic on advertising effect. As the advertisement characteristics, we classified advertisement format classified by bar type and floating type, and advertisement material classified by image and text. We defined advertisement characteristics of advertisement platform as Hedonic and Utilitarian media characteristics. As a dependent variable, we use CTR, which is the ratio of response (click) to ad exposure. The theoretical background and the analysis of the mobile advertising business, the hypothesis that the advertisement effect is different according to the advertisement specification, the advertisement material, In the ad standard, bar ads are classified as static framing, Floating ads can be categorized as dynamic framing, and the hypothetical definition of floating advertisements, which are high-profile dynamic framing ads, is highly responsive. In advertising, images with high salience are defined to have higher ad response than text. In the media characteristics classified as practical / hedonic type, it is defined that the hedonic type media has a more relaxed tendency than the practical media, and there is a high possibility of receiving various information because there is no clear target. In addition, image material and hedonic media are defined to be highly effective in the interaction between advertisement specification and advertisement material, advertisement specifications and media characteristics, and advertisement material and media characteristics. As the result of regression analysis on each characteristic, material standard, which is a characteristic of mobile advertisement, and media characteristics separated into 'Hedonic' and 'Utilitarian' had significant influence on advertisement effect and mutual interaction effect was also confirmed. In the mobile advertising standard, the advertising effect of the floating advertisement is higher than that of the bar advertisement, Floating ads were more effective than text ads for image ads. In addition, it was confirmed that the advertising effect is higher in the practical media than the hedonic media. The research was carried out with the big data collected from the mobile advertising platform, and it was possible to grasp the advertising effect of the measure index standard which is used in the practical work which could not be grasped in the previous research. In other words, the study was conducted using the CTR, which is a measure of the effectiveness of the advertisement used in the online advertisement and the mobile advertisement, which are not dependent on the attitude of the ad, the attitude of the brand, and the purchase intention. This study suggests that CTR is used as a dependent variable of advertising effect based on actual data of mobile ad platform accumulated over a long period of time. The results of this study is expected to contribute to establishment of optimum advertisement strategy such as creation of advertising materials and planning of media which suit advertised products at the time of mobile advertisement.

Development of User Based Recommender System using Social Network for u-Healthcare (사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발)

  • Kim, Hyea-Kyeong;Choi, Il-Young;Ha, Ki-Mok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.181-199
    • /
    • 2010
  • As rapid progress of population aging and strong interest in health, the demand for new healthcare service is increasing. Until now healthcare service has provided post treatment by face-to-face manner. But according to related researches, proactive treatment is resulted to be more effective for preventing diseases. Particularly, the existing healthcare services have limitations in preventing and managing metabolic syndrome such a lifestyle disease, because the cause of metabolic syndrome is related to life habit. As the advent of ubiquitous technology, patients with the metabolic syndrome can improve life habit such as poor eating habits and physical inactivity without the constraints of time and space through u-healthcare service. Therefore, lots of researches for u-healthcare service focus on providing the personalized healthcare service for preventing and managing metabolic syndrome. For example, Kim et al.(2010) have proposed a healthcare model for providing the customized calories and rates of nutrition factors by analyzing the user's preference in foods. Lee et al.(2010) have suggested the customized diet recommendation service considering the basic information, vital signs, family history of diseases and food preferences to prevent and manage coronary heart disease. And, Kim and Han(2004) have demonstrated that the web-based nutrition counseling has effects on food intake and lipids of patients with hyperlipidemia. However, the existing researches for u-healthcare service focus on providing the predefined one-way u-healthcare service. Thus, users have a tendency to easily lose interest in improving life habit. To solve such a problem of u-healthcare service, this research suggests a u-healthcare recommender system which is based on collaborative filtering principle and social network. This research follows the principle of collaborative filtering, but preserves local networks (consisting of small group of similar neighbors) for target users to recommend context aware healthcare services. Our research is consisted of the following five steps. In the first step, user profile is created using the usage history data for improvement in life habit. And then, a set of users known as neighbors is formed by the degree of similarity between the users, which is calculated by Pearson correlation coefficient. In the second step, the target user obtains service information from his/her neighbors. In the third step, recommendation list of top-N service is generated for the target user. Making the list, we use the multi-filtering based on user's psychological context information and body mass index (BMI) information for the detailed recommendation. In the fourth step, the personal information, which is the history of the usage service, is updated when the target user uses the recommended service. In the final step, a social network is reformed to continually provide qualified recommendation. For example, the neighbors may be excluded from the social network if the target user doesn't like the recommendation list received from them. That is, this step updates each user's neighbors locally, so maintains the updated local neighbors always to give context aware recommendation in real time. The characteristics of our research as follows. First, we develop the u-healthcare recommender system for improving life habit such as poor eating habits and physical inactivity. Second, the proposed recommender system uses autonomous collaboration, which enables users to prevent dropping and not to lose user's interest in improving life habit. Third, the reformation of the social network is automated to maintain the quality of recommendation. Finally, this research has implemented a mobile prototype system using JAVA and Microsoft Access2007 to recommend the prescribed foods and exercises for chronic disease prevention, which are provided by A university medical center. This research intends to prevent diseases such as chronic illnesses and to improve user's lifestyle through providing context aware and personalized food and exercise services with the help of similar users'experience and knowledge. We expect that the user of this system can improve their life habit with the help of handheld mobile smart phone, because it uses autonomous collaboration to arouse interest in healthcare.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.