• Title/Summary/Keyword: integration capability

Search Result 317, Processing Time 0.025 seconds

A Study of Pervasive Roaming Services with Security Management Framework (퍼베이시브 로밍 서비스를 위한 보안 관리 프레임워크)

  • Kim, Gwan-Yeon;Hwang, Zi-On;Kim, Yong;Uhm, Yoon-Sik;Park, Se-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.4
    • /
    • pp.115-129
    • /
    • 2007
  • The ubiquitous and autonomic computing environments is open and dynamic providing the universal wireless access through seamless integration of software and system architectures. The ubiquitous computing have to offer the user-centric pervasive services according to the wireless access. Therefore the roaming services with the predefined security associations among all of the mobile devices in various networks is especially complex and difficult. Furthermore, there has been little study of security coordination for realistic autonomic system capable of authenticating users with different kinds of user interfaces, efficient context modeling with user profiles on Smart Cards, and providing pervasive access service by setting roaming agreements with a variety of wireless network operators. This paper proposes a Roaming Coordinator-based security management framework that supports the capability of interoperator roaming with the pervasive security services among the push service based network domains. Compared to traditional mobile systems in which a Universal Subscriber Identity Module(USIM) is dedicated to one service domain only, our proposed system with Roaming Coordinator is more open, secure, and easy to update for security services throughout the different network domains such as public wireless local area networks(PWLANs), 3G cellular networks and wireless metropolitan area networks(WMANs).

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea (PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구)

  • Kim, Young-Hyun;Choi, Myeong-Ju;Shim, Kyo-Moon;Hur, Jina;Jo, Sera;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.577-592
    • /
    • 2021
  • This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.

Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations (금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구)

  • Nde, Dieudonne Tanue;Lee, Ji Won;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2022
  • Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.

Damage Estimation for Offshore Tubular Members Under Quasi-Static Loading (준정적하중(準靜的荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상예측(損傷豫測))

  • Paik, Jeom-K.;Shin, Byung-C.;Kim, Chang-Y.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-93
    • /
    • 1989
  • The present study attempts to develop the theoretical model for the damage estimation of offshore tubular members which are subjected to the accidental impact loads due to collision, falling objects and so on. For the reasons of the simplicity of the problem being considered, however, this paper postulates that the accidental load can be approximated to be the quasi-static one, in which dynamic effects are negelcted. Based upon the theoretical and experimental results which are obtained from the present study as well as the existing literature, the load-displacement relations taking the interaction effect between the local denting and the global bending deformation into account are presented in the explicit form when the concentrated lateral load acts on the tubular member whose end condition is supposed to be rotation ally free and axially restrained, in which membrane forces develop. Thus, the practical estimation of damage deformation for the local denting and the global bending damage of tubular members against the accidental loads is possible and also the collision absorption capability of the member can be calculated by performing the integration of the area below the given load-displacement curves, provided that all the energy is dissipated to the deforming the member itself.

  • PDF

A Dilemma of Kyrgyzstan Goes Through the Process of Nation-Building: National Security Problems and Independent National Defense Capability (국가건설과정에서 키르기스스탄의 국가안보와 자주국방의 딜레마)

  • Kim, Seun Rae
    • Journal of International Area Studies (JIAS)
    • /
    • v.14 no.4
    • /
    • pp.27-52
    • /
    • 2011
  • The regions of Central Asia have each acquired an elevated strategic importance in the new security paradigm of post-September 1lth. Comprised of five states, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan, Central Asia's newly enhanced strategic importance stems from several other factors, ranging from trans-national threats posed by Islamic extremism, drug production and trafficking, to the geopolitical threats inherent in the region's location as a crossroads between Russia, Southwest Asia and China. Although the U.S. military presence in the region began before September 11th, the region became an important platform for the projection of U.S. military power against the Taliban in neighboring Afghanistan. The analysis goes on to warn that 'with US troops already in place to varying extents in Central Asian states, it becomes particularly important to understand the faultlines, geography, and other challenges this part of the world presents'. The Kyrgyz military remains an embryonic force with a weak chain of command, the ground force built to Cold War standards, and an almost total lack of air capabilities. Training, discipline and desertion - at over 10 per cent, the highest among the Central Asian republics - continue to present major problems for the creation of combat-effective armed forces. Kyrgyzstan has a declared policy of national defence and independence without the use of non-conventional weapons. Kyrgyzstan participates in the regional security structures, such as the Collective Security Treaty Organisation (CSTO) and the Shanghai Co-operation Organisation (SCO) but, in security matters at least, it is dependent upon Russian support. The armed forces are poorly trained and ill-equipped to fulfil an effective counter-insurgency or counter-terrorist role. The task of rebuilding is much bigger, and so are the stakes - the integrity and sovereignty of the Kyrgyz state. Only democratization, the fight against corruption, reforms in the military and educational sectors and strategic initiatives promoting internal economic integration and national cohesion hold the key to Kyrgyzstan's lasting future

An Empirical Study of effect how COO Factors impact on COO Performance in accordance with Origin Images (원산지 이미지에 따라 원산지 요인들이 원산지제도 성과에 미치는 영향에 관한 연구)

  • Kim, Chang-Bong;Hyun, Hwa-Jung
    • Korea Trade Review
    • /
    • v.41 no.4
    • /
    • pp.131-155
    • /
    • 2016
  • Recently, the global trade environment has been composed of transactions in trade through integration of the global supply chain network. As FTAs are being signed between countries, the country of origin (COO) system on products has become an important issue. Companies are procuring raw materials through global sourcing and supplying to the retail markets. This research deducted major factors regarding the verification and utilization of the COO system through research on domestic and international literatures, and verified the mediating effects on the verification and utilization elements of the country image and the brand image of COO on the performance of the COO system through empirical study. For the purpose of this research, we conducted a survey implementing the COO system and analyzed the 152 data collected. The results of this research is as follows: First, the external verification level of the COO system has an impact on the performance of the COO system, and a mediating effect on the country image and the brand image of the COO. Second, the management capability of the COO has an impact on the performance of the COO system, and a mediating effect on the brand image of the COO. A research comparing and analyzing the difference in establishment of the verification system of the COO depending on the size of a corporation is necessary.

  • PDF

Proposal for the 『Army TIGER Cyber Defense System』 Installation capable of responding to future enemy cyber attack (미래 사이버위협에 대응 가능한 『Army TIGER 사이버방호체계』 구축을 위한 제언)

  • Byeong-jun Park;Cheol-jung Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.157-166
    • /
    • 2024
  • The Army TIGER System, which is being deployed to implement a future combat system, is expected to bring innovative changes to the army's combat methods and comabt execution capability such as mobility, networking and intelligence. To this end, the Army will introduce various systems using drones, robots, unmanned vehicles, AI(Artificial Intelligence), etc. and utilize them in combat. The use of various unmanned vehicles and AI is expected to result in the introduction of equipment with new technologies into the army and an increase in various types of transmitted information, i.e. data. However, currently in the military, there is an acceleration in research and combat experimentations on warfigthing options using Army TIGER forces system for specific functions. On the other hand, the current reality is that research on cyber threats measures targeting information systems related to the increasing number of unmanned systems, data production, and transmission from unmanned systems, as well as the establishment of cloud centers and AI command and control center driven by the new force systems, is not being pursued. Accordingly this paper analyzes the structure and characteristics of the Army TIGER force integration system and makes suggestions for necessity of building, available cyber defense solutions and Army TIGER integrated cyber protections system that can respond to cyber threats in the future.

Intelligent Transportation System (ITS) research optimized for autonomous driving using edge computing (엣지 컴퓨팅을 이용하여 자율주행에 최적화된 지능형 교통 시스템 연구(ITS))

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • In this scholarly investigation, the focus is placed on the transformative potential of edge computing in enhancing Intelligent Transportation Systems (ITS) for the facilitation of autonomous driving. The intrinsic capability of edge computing to process voluminous datasets locally and in a real-time manner is identified as paramount in meeting the exigent requirements of autonomous vehicles, encompassing expedited decision-making processes and the bolstering of safety protocols. This inquiry delves into the synergy between edge computing and extant ITS infrastructures, elucidating the manner in which localized data processing can substantially diminish latency, thereby augmenting the responsiveness of autonomous vehicles. Further, the study scrutinizes the deployment of edge servers, an array of sensors, and Vehicle-to-Everything (V2X) communication technologies, positing these elements as constituents of a robust framework designed to support instantaneous traffic management, collision avoidance mechanisms, and the dynamic optimization of vehicular routes. Moreover, this research addresses the principal challenges encountered in the incorporation of edge computing within ITS, including issues related to security, the integration of data, and the scalability of systems. It proffers insights into viable solutions and delineates directions for future scholarly inquiry.

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.