• Title/Summary/Keyword: integrated urban flood model

Search Result 25, Processing Time 0.022 seconds

Research on the construction concept and general framework of Smart Water Resource

  • Tian, Yu;Li, JianGuo;Jiang, Yun-zhong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.216-216
    • /
    • 2015
  • Frequent hydro-meteorological events caused by global climate change and human exacerbate activities, make the water resource problem more complicated. The increasing speed urbanization brings a significant impact on the city flood control and security, water supply safety, water ecological security, water environment safety and the water engineering security in China, and puts forward higher requirements to urban water integrated management, undoubtedly which become the biggest obstacle for water ecological civilization construction, thus urgent requiring an advanced methods to enhance the effectiveness of the water integrated management. The other fields of smart ideas point out a development path for water resource development. The construction demand of smart water resource is expounded in the paper, combining the philosophy of modern Internet of things with the application of cloud computing technology. The concept of smart water resource is analyzed, the connotation characteristics of smart water resource is extracted, and the general model of smart water resource is refined. Then, the frame structure of smart water resource is put forward. The connotation and the overall framework of the smart water resource represent a higher level of water resource informationization development and provide a comprehensive scientific and technological support to transform water resource management from an extensive, passive, static, branch and traditional management to a fine, active, dynamic, collaborative and modern management.

  • PDF

Impact of the Mekong River Flow Alteration on the Tonle Sap Lake in Cambodia

  • Lee, Giha;Kim, Joocheol;Jung, Kwansue;Lee, Hyunseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.231-231
    • /
    • 2015
  • Rapid development in the upper reaches of the Mekong River, in the form of construction of large hydropower dams and reservoirs, large irrigation schemes, and rapid urban development, is putting water resources under stress. Many scientific reports have pointed out that cascade dams along the Mekong River lead to serious problems: not only hydrologically but also a decline of agricultural productivity due to a decrease of sediment supply in the Mekong Delta and a change of fish amount due to drastic change of the water environment. Cambodia and Vietnam, located in the lowest Mekong basin, are gravely affected by radical changes of hydrologic regime due to Mekong River developments. In particular, the Tonle Sap Lake in Cambodia is very sensitive to the flood cycle and flow variation of the Mekong River as well as inflow water quality from the Mekong River. More than 50% of Cambodian GDP depends on the primary industries such as agriculture, fishing, and forestry, and the Tonle Sap Lake plays an important role to support the national economy in Cambodia. In addition, Cambodian people usually take nourishment from the fish of Tonle Sap Lake. This research aims to assess the impacts of the Mekong river flow alternation on the hydrologic regime of the Mekong River - Tonle Sap Lake. We carried out rainfall-runoff-inundation simulation using CAESER-LISFLOOD for integrated water resource management in the Tonle Sap Basin and then analyze flood inundation variation of the Tonle Sap Lake due to the scenarios. Furthermore, the simulated inundation maps were compared to MODIS satellite images for model verification and hydrologic prediction.

  • PDF

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

Study of the Construction of a Coastal Disaster Prevention System using Deep Learning (딥러닝을 이용한 연안방재 시스템 구축에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, Myong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

Development of an Integrated Inundation Analysis Model for Urban Flood Inundation Analysis (도시지역의 침수해석을 위한 통합침수해석모형의 개발)

  • Kim, Dong-Il;Son, Ah-Long;Son, In-Ho;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.135-135
    • /
    • 2011
  • 지구온난화와 이상기후에 따라 최근 우리나라를 둘러싼 기후패턴의 변화가 가속화되고 있으며 한반도는 장마기간이 소강상태를 보이는 반면, 장마 후 국지성 집중호우가 증가하고 태풍이 내습하는 현상이 빈번해짐으로써 홍수에 대한 위험과 피해규모도 증가하고 있다. 특히 도시지역에서는 강우규모가 배수시스템의 용량을 초과하거나, 하천수위 상승으로 관로 내에 역류가 발생하는 등 우수 배제 기능을 제대로 수행하지 못할 경우 발생하는 지표침수로 인해 심각한 인명 및 재산피해가 발생하고 있다. 실제로 현재 홍수해석 및 홍수위험지도 작성시 내수시스템을 반영하지 않아 침수면적 및 범위의 오차가 존재하며 홍수위험지도 작성시 내수범람과 외수범람을 따로 고려하는 문제점이 있다. 따라서 도시 침수 해석시 내수시스템을 반영한 정확한 침수심 및 침수면적계산뿐만 아니라 이상기후에 대비한 복합적 요인으로 인한 침수해석이 필요하다. 따라서 본 연구에서는 하천해석을 위해 1차원 하천 해석 모형인 FLDWAV모형을 적용하고 가상의 제방 파제 시나리오를 통하여 외수범람 영향을 구하였으며, 배수시스템의 SWMM모형과 제내지에서 내수와 외수범람의 영향을 고려한 DEM기반의 2차원 범람해석을 연계한 Dual-Drainage모형에 대하여 외수범람 영향에 따른 흐름의 양상, 침수심, 침수위 등을 분석하였다. 개발한 모형에 대한 적용성을 검토하기 위하여 대구 신암5동 유역을 선정하였고 대상유역의 수치지도를 활용하여 정형 격자 20m 크기로 지형자료를 구성하였으며, 건물의 영향도 고려하기 위해 DEM에 건물자료를 합성하였다. 침수해석 결과 내수시스템의 영향을 고려하지 않을 때가 고려하였을 때 보다 Node(맨홀)에서의 재유입의 영향으로 인하여 최대 침수심이 더 높게 나왔으며 침수면적도 넓게 나타나는 것을 확인하였고, 기존의 홍수위험지도 작성시 외수침수와 내수침수를 구분하여 해석하였던 것을 본 연구에서 통합하여 외수범람의 영향을 고려한 통합침수해석을 실시하여 내수에서 발생할 수 있는 유출량과 내수시스템의 월류량 등에 대한 고려가 없는 외수침수만 해석시 보다 최대침수심이 더 높게 나타났으며 침수면적 또한 넓게 나타남을 알 수 있었다. 본 연구를 통해서 도시홍수, 돌발홍수 등의 발생시 정확한 도시 침수 해석이 가능하며 도시침수구역에 대한 적절한 예 경보 및 피난대책 수립에 활용될 수 있을 것으로 사료된다. 또한 국내의 홍수위험지도나 도시 침수해석과 연계하여 선행시간을 확보한 정확도 높은 홍수정보시스템 구축에 크게 기여할 것으로 판단된다.

  • PDF