• 제목/요약/키워드: integrated kinetic model

검색결과 30건 처리시간 0.026초

Development of Multi-Components Model of Cement Hydration

  • ;이한승;경제운;박기봉
    • 한국세라믹학회:학술대회논문집
    • /
    • 한국세라믹학회 2007년도 제34회 시멘트 심포지엄
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of hydration of cement mineral component, such as $C_{3}S$, $C_{2}S$, $C_{3}A$, $C_{4}AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component integrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

AN ANALYSIS OF MOLDING AND CURING OF SMC BY THE FINITE ELEMENT METHOD

  • Kim, Naksoo-
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.177-200
    • /
    • 1992
  • A thermo-viscoplastic finite element program was developed to analyze the compression molding of SMC process. Deformation of the material was modelled by using the flow-rule. Heat balance during the process was coupled to the deformation. In the cure study, a kinetic model was adopted to describe the cure behavior. The numerical kinetic model was integrated with the thermo-viscoplastic numerical analysis by adding heat generation due to the chemical reaction of the workpiece in the heat transfer analysis. The integrated finite element program can simulate a whole sequential molding process including deformation, heat transfer, and chemical reaction. A practical SMC molding process with T-shaped substructure was simulated. The simulated results showed good agreements with experiments.

  • PDF

Development of Multi-Components Model of Cement Hydration

  • ;이한승;경제운;박기봉
    • 시멘트 심포지엄
    • /
    • 통권34호
    • /
    • pp.129-137
    • /
    • 2007
  • This paper presents a numerical model which can predict degree of cement mineral component, such as $C_3S$, $C_2S$, $C_3A$, $C_4AF$ and microstructure of hydrating cement as a function of water to cement ratio, cement particle size distribution, cement mineral components and temperature. In this model cement particles are parked randomly in cell space and hydration process is described using a multi-component intergrated kinetic model. The simulation result of degree of hydration of cement mineral component agrees well with experiment result. The content of cement hydration product, such as CSH and CH can be obtained as an accompanied result during hydration process. By introducing of equal-area projection method, water withdrawl mechanism and contact area among cement particles can be considered in detail. By using proposed method, pore size distribution of hydrating cement is predicted.

  • PDF

유동층에서의 촉매 석탄가스화 공정 모델 모사를 위한 kinetics에 대한 연구 (The study on kinetic value for simulation in fluidized catalytic gasification)

  • 장동하;전영신;김형택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.74.1-74.1
    • /
    • 2011
  • As a demand for energy, many studies are increasing about energy resource. One of these resources is coal which reserves of underground. A lot of research to use coal is going on as method of IGCC (Integrated Gasification Combined Cycle). In addition, SNG(Substitute Natural Gas) and IGFC (Integrated Gasification Fuel Cell) are also being developed for fuel & electricity. This technology which uses synthesis gas after gasification is to produce electricity from the Fuel Cell. At this point, important thing is the components of synthesis gas. The main objective is to increase the proportion of methane and hydrogen in synthesis gas. The catalytic gasification is suitable to enhance the composition of methane and hydrogen. In this study, Exxon Predevelopment catalyst gasification study was served as a good reference and then catalytic gasification simulation process is conducting using Aspen Plus in this research. For this modelling, kinetic value should be calculated from Exxon's report which is used for modeling catalytic gasification. Catalytic gasification model was performed by following above method and was analyzed by thermodynamic method through simulation results.

  • PDF

Pilot 규모의 모의 관망에서의 염소 농도 예측 (Prediction of Chlorine Concentration in a Pilot-Scaled Plant Distribution System)

  • 김현준;김상현
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.861-869
    • /
    • 2012
  • The chlorine's residual concentration prevents the regrowth of microorganism in water transport along the pipeline system. Precise prediction of chlorine concentration is important in determining disinfectant injection for the water distribution system. In this study, a pilot scale water distribution system was designed and fabricated to measure the temporal variation of chlorine concentration for three flow conditions (V = 0.88, 1.33, 1.95 m/s). Various kinetic models were applied to identify the relationship between hydraulic condition and chlorine decay. Genetic Algorithm (GA) was integrated into five kinetic models and time series of chlorine were used to calibrate parameters. Model fitness was compared by Root Mean Square Error (RMSE) between measurement and prediction. Limited first order model and Parallel first order showed good fitness for prediction of chlorine concentration.

Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Rallapalli, Phani Brahma Somayajulu;Ha, Jeong Hyub
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.562-568
    • /
    • 2019
  • Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.

통합 수증기 개질 시스템의 작동 조건에 대한 수치적 연구 (Parametric Study of an Integrated Steam Methane Reformer with Top-Fired Combustor)

  • 노정훈;정혜미;김동희;엄석기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.156.1-156.1
    • /
    • 2011
  • It is of great importance to predict operating parameter characteristics of an integrated fuel processor by the increased life-time and system performance. In this study, computational analysis is performed to gain fundamental insights on transport phenomena and chemical reactions in reformer which consists of preheating, steam reforming, and water gas shift reaction beds. Also, a top-fired burner locates inside of the reforming system. The combustor is providing thermal energy necessary for the steam reforming bed which is a endothermic catalytic reactor. Two-dimensional numerical model of the integrated fuel processing system is introduced for the analysis of heat and mass transport phenomena as well as surface kinetics and catalytic process. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Subsequently, parameter study using the validated steam methane reforming model was conducted by considering operating parameters, i.e. steam to carbon ratio and temperature.

  • PDF

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • 공업화학
    • /
    • 제31권5호
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.

식품건조공정 최적화에의 적용을 위한 품질 변화 Kinetics 결정 (Kinetics Determination of Quality Changes for the Optimization of Food Dehydration)

  • 이동선;변유량
    • 한국식품과학회지
    • /
    • 제20권2호
    • /
    • pp.272-279
    • /
    • 1988
  • 대표적인 재료로서 무를 선정하여 실제 건조과정을 이용한 dynamic test에 의하여 최적화에 사용할 수 있는 ascorbic acid파괴와 갈변의 kinetics를 구했다. 다양하게 변하는 건조조건에서 무우가 건조될 때의 수분함량과 온도의 변화과정을 이용하여 가정된 kinetic model을 적분하여 실제 측정된 ascorbic acid와 갈변의 data에 가장 접근하도록 parameter를 반복계산에 의하여 찾았다. Ascorbic acid 파괴와 갈변은 각각 1차와 0차반응으로, 두 반응의 온도의존성은 Arrhenius식으로 나타내었고 수분의존성의 가능한 여러 수학적 함수관계가 model의 단순성과 측정치와의 만족도면에서 비교되었고 타당한 품질변화 model을 분석하였다. 얻어진 kinetic model들은 실험치를 잘 예측하였고 건조공정의 최적화에 이용될 수 있는 것으로 생각되었다. Ascorbic acid 파괴는 건조초기 고수분함량에서 낮고 건조가 진행되어 수분 $9{\sim}12g/g$ dry solid부근에서 최대속도를 보이다가 더 이상 수분이 낮아지면서 감소하였다. 갈변은 고수분함량에서 낮다가 수분감소와 함께 증가하여 수분함량 $4{\sim}6g/g$ dry solid부근에서 최대를 나타내고 수분함량이 더욱 감소하면 계속 감소하였다.

  • PDF