• Title/Summary/Keyword: integrated classification

Search Result 566, Processing Time 0.022 seconds

Automatic Classification of Drone Images Using Deep Learning and SVM with Multiple Grid Sizes

  • Kim, Sun Woong;Kang, Min Soo;Song, Junyoung;Park, Wan Yong;Eo, Yang Dam;Pyeon, Mu Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.407-414
    • /
    • 2020
  • SVM (Support vector machine) analysis was performed after applying a deep learning technique based on an Inception-based model (GoogLeNet). The accuracy of automatic image classification was analyzed using an SVM with multiple virtual grid sizes. Six classes were selected from a standard land cover map. Cars were added as a separate item to increase the classification accuracy of roads. The virtual grid size was 2-5 m for natural areas, 5-10 m for traffic areas, and 10-15 m for building areas, based on the size of items and the resolution of input images. The results demonstrate that automatic classification accuracy can be increased by adopting an integrated approach that utilizes weighted virtual grid sizes for different classes.

Database Model of Subway Construction NAS Operating System for Scheduling Management Science (공정관리 과학화를 위한 지하철공사 NAS운영체계 데이터베이스 모델링 구축)

  • Choi, Jaejin;Cho, Byounghoo;Park, Hongtae
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • This study proposed subway construction information classification system based on civil engineering information classification system proposed by Korea Institute of Construction Technology. Also, Based on this criterion, This study established data modeling for NAS operating system Composed of construction information classification system - network - operation and presented an relational database integrated model. The data modeling method proposed in this study can be applied to other civil engineering facilities, so it can be operated as scientific NAS.

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.

Application of Bayesian Statistical Analysis to Multisource Data Integration

  • Hong, Sa-Hyun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.394-399
    • /
    • 2002
  • In this paper, Multisource data classification methods based on Bayesian formula are considered. For this decision fusion scheme, the individual data sources are handled separately by statistical classification algorithms and then Bayesian fusion method is applied to integrate from the available data sources. This method includes the combination of each expert decisions where the weights of the individual experts represent the reliability of the sources. The reliability measure used in the statistical approach is common to all pixels in previous work. In this experiment, the weight factors have been assigned to have different value for all pixels in order to improve the integrated classification accuracies. Although most implementations of Bayesian classification approaches assume fixed a priori probabilities, we have used adaptive a priori probabilities by iteratively calculating the local a priori probabilities so as to maximize the posteriori probabilities. The effectiveness of the proposed method is at first demonstrated on simulations with artificial and evaluated in terms of real-world data sets. As a result, we have shown that Bayesian statistical fusion scheme performs well on multispectral data classification.

  • PDF

A Study on the Building of Integrated Service for Science and Technology Knowledge Infrastructure Supporting the Entire R&D Cycle (R&D 전주기 지원형 과학기술 지식인프라 통합서비스 구축에 관한 연구)

  • Lee, Seok Hyoung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.31 no.3
    • /
    • pp.235-256
    • /
    • 2020
  • The purpose of this study is to define a method of building an integrated service to provide various science and technology knowledge infrastructures that are helpful in R&D activities, and to show the cases that are adapted the methodologies. Knowledge infrastructures scattered throughout the entire R&D cycle, such as generating/development of ideas, finding the R&D project, performing the project, and spreading results, are segmented in terms of services, functions, information, and data, and links and converges to provide the knowledge infrastructure that desired by users in one place. We define the integrated service classification, integration level model, integrated architecture, and integrated user authentication system in consideration of logical linkage and integration rather than physical integration of individual knowledge infrastructures. Also, we considered the extensibility as the reference model for building of similar integrated service.

Review of Korean Speech Act Classification: Machine Learning Methods

  • Kim, Hark-Soo;Seon, Choong-Nyoung;Seo, Jung-Yun
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.288-293
    • /
    • 2011
  • To resolve ambiguities in speech act classification, various machine learning models have been proposed over the past 10 years. In this paper, we review these machine learning models and present the results of experimental comparison of three representative models, namely the decision tree, the support vector machine (SVM), and the maximum entropy model (MEM). In experiments with a goal-oriented dialogue corpus in the schedule management domain, we found that the MEM has lighter hardware requirements, whereas the SVM has better performance characteristics.

Development of e-Catalog System for Overseas Construction Equipments (해외건설 기자재 전자카탈로그 시스템 구축)

  • Ahn, Ho-Jun;Park, Ho-Byung;Jang, Kwang-Sub;Youk, Jong-Gon;Lee, Jae-Chon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.98-108
    • /
    • 2008
  • Plant, civil engineering and construction equipment data of overseas construction are obtained and then analyzed, classified and integrated by experts. With those refined data set, we built classification system and defined property information with reference to international standard (ISO 15926, IRDL). If class in ISO 15926 is predefined for equipment of interest, we used the class as is. If not, we created and defined new classes on the basis of ISO 15926 classes. If there is similar class for equipment of interest, extension or inheritance methods were used. As a result, classification system of five levels and 637 classes were built and construction equipment information were expressed in open structure of XML such as tree structure of classification system and detailed information with number equipments for each specific equipment. We also developed the electronic catalog system which is basically equipment information management system providing various product search functions.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

Shape Recognition and Classification Based on Poisson Equation- Fourier-Mellin Moment Descriptor

  • Zou, Jian-Cheng;Ke, Nan-Nan;Lu, Yan
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, we present a new shape descriptor, which is named Poisson equation-Fourier-Mellin moment Descriptor. We solve the Poisson equation in the shape area, and use the solution to get feature function, which are then integrated using Fourier-Mellin moment to represent the shape. This method develops the Poisson equation-geometric moment Descriptor proposed by Lena Gorelick, and keeps both advantages of Poisson equation-geometric moment and Fourier-Mellin moment. It is proved better than Poisson equation-geometric moment Descriptor in shape recognition and classification experiments.

Real-time implementation and performance evaluation of speech classifiers in speech analysis-synthesis

  • Kumar, Sandeep
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.82-94
    • /
    • 2021
  • In this work, six voiced/unvoiced speech classifiers based on the autocorrelation function (ACF), average magnitude difference function (AMDF), cepstrum, weighted ACF (WACF), zero crossing rate and energy of the signal (ZCR-E), and neural networks (NNs) have been simulated and implemented in real time using the TMS320C6713 DSP starter kit. These speech classifiers have been integrated into a linear-predictive-coding-based speech analysis-synthesis system and their performance has been compared in terms of the percentage of the voiced/unvoiced classification accuracy, speech quality, and computation time. The results of the percentage of the voiced/unvoiced classification accuracy and speech quality show that the NN-based speech classifier performs better than the ACF-, AMDF-, cepstrum-, WACF- and ZCR-E-based speech classifiers for both clean and noisy environments. The computation time results show that the AMDF-based speech classifier is computationally simple, and thus its computation time is less than that of other speech classifiers, while that of the NN-based speech classifier is greater compared with other classifiers.