• Title/Summary/Keyword: integral sliding mode

Search Result 117, Processing Time 0.031 seconds

Integral Sliding Mode Controller for Magnetically Suspended Balance Beam: Theory and Experimental Evaluation (자기력 부상 시스템인 평형빔의 Integral Sliding Mode 제어기 : 이론과 실험적 평가)

  • Lee, Jun-Ho;Lee, Jeong-Seok;Park, Yeong-Su;Lee, Jae-Hun;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.526-537
    • /
    • 2000
  • This paper deals with a sliding mode controller with integral compensation in a magnetic suspension system The control scheme comprises an integral controller which is designed for achieving zero steady-steate error under step disturbance input and a sliding mode controller which is designed for enhancing robustness under plant parametric variations. A procedure is developed for determining the coefficients of the switching plane and integral control gain such that the overall closed-loop system has stable eigenvalues. A proper continuous design signal is introduced to overcome the chattering problem. The performance of a magnetically suspended balance beam using the proposed integral sliding mode controller is illustrated. Simulation and experimental results also show that the proposed method is effective under the external step disturbance and input channel parametric variations.

  • PDF

Suppression of the Disturbance Force in The Magnetically Levitated Train System Using Integral Sliding Mode Controller (자기부상열차 시스템에서 적분형 슬라이딩 모드 제어기를 이용한 부상억제력 제거)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.722-726
    • /
    • 2007
  • In this paper we deal with a design of the integral sliding mode controller to suppress the disturbance force acting on the suspension system of the magnetically levitated train system. One of the important factors that cause the disturbance force acting on the suspension system comes from the low propulsion speed of linear induction motor. In this paper integral sliding mode controller is employed to reject the disturbance force produced by the propulsion system of the linear induction motor. In order to show the effectiveness of the designed controller a dynamic simulation is utilized and the sliding mode controller without integral compensator is compared with the proposed integral sliding mode controller to suppress the disturbance force.

  • PDF

A Comparison of Sliding Mode and Integral Sliding Mode Controls for Robot Manipulators (로봇 매니퓰레이터를 위한 슬라이딩 모드와 적분 슬라이딩 모드 제어의 비교)

  • Yoo, Dong-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.168-172
    • /
    • 2009
  • We compare an integral sliding mode control with a typical sliding mode control for robot manipulators through two primitive tasks: set-point regulation and trajectory tracking control. To prove the asymptotic stability of two methods for robot manipulators, we introduce three important properties in the robot dynamics: skew-symmetry, positive-definiteness, and boundedness of robot parameter matrices and we present one unified control structure using a parametric velocity vector. From illustrative examples, we show that two methods effectively control for robot manipulators.

Output Feedback Stabilization using Integral Sliding Mode Control (적분 슬라이딩 모드 제어기를 이용한 출력 궤환 안정화)

  • Oh, Seung-Rohk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.142-147
    • /
    • 2003
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainty. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the presence of input coefficient uncertainty.

LMI-based Design of Integral Sliding Mode Controllers (적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.563-566
    • /
    • 2009
  • This paper presents an LMI-based method to design a integral sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law. Our method is a generalization of the previous integral sliding mode control design methods. Since our method is based on LMIs, it gives design flexibility for combining various useful design criteria that can be captured in the LMI-based formulation.

LMI-based Design of Integral Sliding Mode Controllers for Time-Delay Systems (시간 지연 시스템을 위한 적분 슬라이딩 모드 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2480-2483
    • /
    • 2009
  • This paper presents an LMI-based method to design a integral sliding mode controller for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding surface guaranteeing the asymptotic stability of the sliding mode dynamics. And we give a switching feedback control law. Our method is a generalization of the previous integral sliding mode control design methods. Since our method is based on LMIs, it gives design flexibility for combining various useful design criteria that can be captured in the LMI-based formulation. We also give LMI existence conditions of sliding surfaces guaranteeing a-stability or LQ performance constraint. Finally, we give a numerical design example to show the effectiveness of the proposed method.

Second order integral sliding mode observer and controller for a nuclear reactor

  • Surjagade, Piyush V.;Shimjith, S.R.;Tiwari, A.P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.552-559
    • /
    • 2020
  • This paper presents an observer-based chattering free robust optimal control scheme to regulate the total power of a nuclear reactor. The non-linear model of nuclear reactor is linearized around a steady state operating point to obtain a linear model for which an optimal second order integral sliding mode controller is designed. A second order integral sliding mode observer is also designed to estimate the unmeasurable states. In order to avoid the chattering effect, the discontinuous input of both observer and controller are designed using the super-twisting algorithm. The proposed controller is realized by combining an optimal linear tracking controller with a second order integral sliding mode controller to ensure minimum control effort and robustness of the closed-loop system in the presence of uncertainties. The condition for the selection of gains of discontinuous control based on the super-twisting algorithm is derived using a strict Lyapunov function. Performance of the proposed observer based control scheme is demonstrated through non-linear simulation studies.

A New Robust Discrete Integral Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 적분형 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1167-1172
    • /
    • 2010
  • In this paper, a new discrete integral variable structure controller based on the a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral sliding surface. The discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral sliding surface for guaranteeing the designed output in the integral sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

A MIMO VSS with an Integral-Augmented Sliding Surface for Uncertain Multivariable Systems (불확실 다변수 시스템을 위한 적분 슬라이딩 면을 갖는 다입출력 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.950-960
    • /
    • 2010
  • In this paper, a multi-input multi-output(MIMO) integral variable structure system with an integral-augmented sliding surface is designed for the improved robust control of uncertain multivariable system under the matched persistent disturbance. To effectively remove the reaching phase problems, the integral augmented sliding surface is proposed. Then for its design, the eigenstructure assignment technique is introduced to. To guarantee the designed performance against the persistent disturbance, the stabilizing control for multi-input system is also designed to generate the sliding mode on the integral sliding surface. The stability of the global system together with the existence condition of the sliding mode are investigated and proved for the case of multi input system in the presence of uncertainty and disturbance. The reaching phase is completely removed in proposed MIMO VSS by satisfying the two requirements. An example and computer simulations will be present for showing the usefulness of algorithm.

A New Robust Discrete Integral Static Output Feedback Variable Structure Controller with Disturbance Observer and Integral Dynamic-Type Sliding Surface for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기와 적분 동특성형 슬라이딩 면을 갖는 새로운 둔감한 이산 적분 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1289-1294
    • /
    • 2010
  • In this paper, a new discrete integral static output feedback variable structure controller based on the a new integral dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral dynamic-type sliding surface. The output feedback discrete version of disturbance observer is presented for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral dynamic-type sliding surface for guaranteeing the designed output in the integral dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using discrete Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.