• Title/Summary/Keyword: integral representation for $_2F_1$

Search Result 7, Processing Time 0.022 seconds

INTEGRAL REPRESENTATION OF SOME BASIC K-HYPERGEOMETRIC FUNCTIONS

  • ALI, ASAD;IQBAL, MUHAMMAD ZAFAR
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.205-213
    • /
    • 2022
  • In this paper we give a simple and direct proof of an Euler integral representation for a special class of q+1Fq,k k-hypergeometric functions for q ≥ 2. The values of certain 3F2,k and 4F3,k functions at $x=\frac{1}{k}$, some of which can be derived using other methods. We may conclude that for k = 1 the results are reduced to [3].

A NOTE ON CERTAIN LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 3F3

  • Kim, Insuk;Jun, Sungtae
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.7-16
    • /
    • 2018
  • The main objective of this paper is to demonstrate how one can obtain very quickly so far unknown Laplace transforms of rather general cases of the generalized hypergeometric function $_3F_3$ by employing generalizations of classical summation theorems for the series $_3F_2$ available in the literature. Several new as well known results obtained earlier by Kim et al. follow special cases of main findings.

A NEW CLASS OF DOUBLE INTEGRALS

  • Anil, Aravind K.;Prathima, J.;Kim, Insuk
    • The Pure and Applied Mathematics
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2021
  • In this paper we aim to establish a new class of six definite double integrals in terms of gamma functions. The results are obtained with the help of some definite integrals obtained recently by Kim and Edward equality. The results established in this paper are simple, interesting, easily established and may be useful potentially.

A CLASS OF DEFINITE INTEGRALS

  • Kim, Insuk
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.453-463
    • /
    • 2017
  • The aim of this paper is to provide a class of six definite general integrals in terms of gamma function. The results are established with the help of generalized summation formulas obtained earlier by Rakha and Rathie. The results established in this paper are simple, interesting, easily established and may be useful potentially.

A GENERALIZATION OF SILVIA CLASS OF FUNCTIONS

  • Lee, Suk-Young;Oh, Myung-Sun
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.881-893
    • /
    • 1997
  • E. M. Silvia introduced the class $S^\lambda_\alpha$ of $\alpha$-spirallike functions f(z) satisfying the condition $$ (A) Re[(e^{i\lambda} - \alpha) \frac{zf'(z)}{f(z)} + \alpha \frac{(zf'(z))'}{f'(z)}] > 0, $$ where $\alpha \geq 0, $\mid$\lambda$\mid$ < \frac{\pi}{2}$ and $$\mid$z$\mid$ < 1$. We will generalize Silvia class of functions by formally replacing f(z) in the denominator of (A) by a spirallike function g(z). We denote the new class of functions by $Y(\alpha,\lambda)$. In this note we obtain some results for the class $Y(\alpha,\lambda)$ including integral representation formula, relations between our class $Y(\alpha,\lambda)$ and Ziegler class $Z_\lambda$, the radius of convexity problem, a few coefficient estimates and a covering theorem for the class $Y(\alpha,\lambda)$.

  • PDF

MULTIDIMENSIONAL SYMMETRIC STABLE PROCESSES

  • Chen, Zhen-Qing
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.329-368
    • /
    • 1999
  • This paper surveys recent remarkable progress in the study of potential theory for symmetric stable processes. It also contains new results on the two-sided estimates for Green functions Poisson kernels and Martin kernels of discontinuous symmetric $alpha$ -stable process in bounded $C^{1,1}$ open sets. The new results give ex-plicit information on how the comparing constants depend on pa-rametrer $alpha$ and consequently recover the green function and Poisson kernel estimates for Brownian motion by passing $alpha{\uparrow}2$. In addition to these new estimates this paper surveys recent progress in the study of notions of harmonicity integral representation of harmonic func-tions boundary harnack inequality conditional gauge and intrinsic ultracontractivity for symmetric stable processes. Here is a table of contents.