• Title/Summary/Keyword: integral observer

Search Result 122, Processing Time 0.016 seconds

High Mass X-ray Binary and IGOS with IGRINS

  • Chun, Moo-Young;Moon, Dae-Sik;Jeong, Ueejeong;Yu, Young Sam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.95-95
    • /
    • 2014
  • The mass measurement of neutron stars or black holes is of fundamental importance in our understanding of the evolution of massive stars and core-collapse supernova explosions as well as some exotic physics of the extreme conditions. Despite the importance, however, it's very difficult to measure mass of these objects directly. One way to do this, if they are in binary systems, to measure their binary motions (i.e., Doppler shifts) which can give us direct information on their mass. Recently many new highly-obscured massive X-ray binaries have been discovered by new hard X-ray satellites such as INTEGRAL and NuSTAR. The new highly-obscured massive X-ray binaries are faint in the optical, but bright in the infrared with many emission lines. Based on the near-infrared spectroscopy, one can first understand the nature of stellar companions to the compact objects, determining its spectral types and luminosity classes as well as mass losses and conditions of (potential) circumstellar material. Next, spectroscopic monitoring of these objects can be used to estimate the mass of compact objects via measuring the Doppler shifts of the lines. For the former, broad-band spectroscopy is essential; for the latter, high-resolution spectroscopy is critical. Therefore, IGRINS appears to be an ideal instrument to study them. An IGRINS survey of these new highly-obscured massive X-ray binaries can give us a rare opportunity to carry out population analyses for understanding the evolution of massive binary systems and formation of compact objects and their mass ranges. In this talk, we will present a sample near-infrared high resolution spectra of HMXB, IGR J19140+0951 and discuss about its spectral feature. These spectra are obtained on 13th July, 2014 from IGRINS commissioning run at McDonald 2.7m telescope. And at final, we will introduce the upgrade plan of IGRINS Operation Software (IGOS), to gather the input from IGRINS observer.

  • PDF

Autopoietic Machinery and the Emergence of Third-Order Cybernetics (자기생산 기계 시스템과 3차 사이버네틱스의 등장)

  • Lee, Sungbum
    • Cross-Cultural Studies
    • /
    • v.52
    • /
    • pp.277-312
    • /
    • 2018
  • First-order cybernetics during the 1940s and 1950s aimed for control of an observed system, while second-order cybernetics during the mid-1970s aspired to address the mechanism of an observing system. The former pursues an objective, subjectless, approach to a system, whereas the latter prefers a subjective, personal approach to a system. Second-order observation must be noted since a human observer is a living system that has its unique cognition. Maturana and Varela place the autopoiesis of this biological system at the core of second-order cybernetics. They contend that an autpoietic system maintains, transforms and produces itself. Technoscientific recreation of biological autopoiesis opens up to a new step in cybernetics: what I describe as third-order cybernetics. The formation of technoscientific autopoiesis overlaps with the Fourth Industrial Revolution or what Erik Brynjolfsson and Andrew McAfee call the Second Machine Age. It leads to a radical shift from human centrism to posthumanity whereby humanity is mechanized, and machinery is biologized. In two versions of the novel Demon Seed, American novelist Dean Koontz explores the significance of technoscientific autopoiesis. The 1973 version dramatizes two kinds of observers: the technophobic human observer and the technology-friendly machine observer Proteus. As the story concludes, the former dominates the latter with the result that an anthropocentric position still works. The 1997 version, however, reveals the victory of the techno-friendly narrator Proteus over the anthropocentric narrator. Losing his narrational position, the technophobic human narrator of the story disappears. In the 1997 version, Proteus becomes the subject of desire in luring divorcee Susan. He longs to flaunt his male egomaniac. His achievement of male identity is a sign of technological autopoiesis characteristic of third-order cybernetics. To display self-producing capabilities integral to the autonomy of machinery, Koontz's novel demonstrates that Proteus manipulates Susan's egg to produce a human-machine mixture. Koontz's demon child, problematically enough, implicates the future of eugenics in an era of technological autopoiesis. Proteus creates a crossbreed of humanity and machinery to engineer a perfect body and mind. He fixes incurable or intractable diseases through genetic modifications. Proteus transfers a vast amount of digital information to his offspring's brain, which enables the demon child to achieve state-of-the-art intelligence. His technological editing of human genes and consciousness leads to digital standardization through unanimous spread of the best qualities of humanity. He gathers distinguished human genes and mental status much like collecting luxury brands. Accordingly, Proteus's child-making project ultimately moves towards technologically-controlled eugenics. Pointedly, it disturbs the classical ideal of liberal humanism celebrating a human being as the master of his or her nature.