• 제목/요약/키워드: integrability conditions

검색결과 49건 처리시간 0.02초

THE EQUIVALENT CONDITIONS OF THE PETTIS INTEGRABILITY

  • Lee, Byoung-Mu
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권1호
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, We Characterize the Pettis integrability for the Dunford integrable functions on a perfect finite measure space.

  • PDF

SASAKIAN METRICS, INTEGRABILITY CONDITIONS AND OPERATORS ON COTANGENT BUNDLE

  • CAYIR, Hasim
    • 호남수학학술지
    • /
    • 제40권4호
    • /
    • pp.749-763
    • /
    • 2018
  • In this paper firstly, It was studied almost paraholomorphic vector field with respect to almost para-Nordenian structure ($F^S$, g) and the purity conditions of the Sasakian metric is investigate with respect to almost para complex structure F on cotangent bundle. Secondly, we obtained the integrability conditions of almost paracomplex structure F by calculating the Nijenhuis tensors of F of type (1, 1) on $^CT(M_n)$. Finally, the Tachibana operator ${\phi}_{\varphi}$ applied to $^Sg$ according to F and the Vishnevskii operators (${\psi}_{\varphi}$-operator) applied to the vertical and horizontal lifts with respect to F on cotangent bundle.

CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES

  • Wu, Yongfeng;Guan, Mei
    • 대한수학회지
    • /
    • 제49권6호
    • /
    • pp.1097-1110
    • /
    • 2012
  • The convergence properties of extended negatively dependent sequences under some conditions of uniform integrability are studied. Some sufficient conditions of the weak law of large numbers, the $p$-mean convergence and the complete convergence for extended negatively dependent sequences are obtained, which extend and enrich the known results in the literature.

ON SOME PROPERTIES OF SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Siddiqi, Mohd Danish
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.73-90
    • /
    • 2012
  • We define a quarter-symmetric non-metric connection in a nearly trans-Sasakian manifold and we consider semi-invariant submanifolds of a nearly trans-Sasakian manifold endowed with a quarter-symmetric non-metric connection. Moreover, we also obtain integrability conditions of the distributions on semi-invariant submanifolds.

Integrability of Distributions in GCR-lightlike Submanifolds of Indefinite Sasakian Manifolds

  • Jain, Varun;Kumar, Rakesh;Nagaich, Rakesh Kumar
    • Kyungpook Mathematical Journal
    • /
    • 제53권2호
    • /
    • pp.207-218
    • /
    • 2013
  • In this paper, we study GCR-lightlike submanifolds of indefinite Sasakian manifold. We give some necessary and sufficient conditions on integrability of various distributions of GCR-lightlike submanifold of an indefinite Sasakian manifold. We also find the conditions for each leaf of holomorphic distribution and radical distribution is totally geodesic.

CR-SUBMANIFOLDS OF A LORENTZIAN PARA-SASAKIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION

  • Ahmad, Mobin
    • 대한수학회보
    • /
    • 제49권1호
    • /
    • pp.25-32
    • /
    • 2012
  • We define a quarter symmetric metric connection in a Lorentzia para-Sasakian manifold and study CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric metric connection. Moreover, we also obtain integrability conditions of the distributions on CR-submanifolds.

CONVERGENCE PROPERTIES FOR THE PARTIAL SUMS OF WIDELY ORTHANT DEPENDENT RANDOM VARIABLES UNDER SOME INTEGRABLE ASSUMPTIONS AND THEIR APPLICATIONS

  • He, Yongping;Wang, Xuejun;Yao, Chi
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1451-1473
    • /
    • 2020
  • Widely orthant dependence (WOD, in short) is a special dependence structure. In this paper, by using the probability inequalities and moment inequalities for WOD random variables, we study the Lp convergence and complete convergence for the partial sums respectively under the conditions of RCI(α), SRCI(α) and R-h-integrability. We also give an application to nonparametric regression models based on WOD errors by using the Lp convergence that we obtained. Finally we carry out some simulations to verify the validity of our theoretical results.