• Title/Summary/Keyword: integer matrices

Search Result 32, Processing Time 0.015 seconds

BOOLEAN RANK INEQUALITIES AND THEIR EXTREME PRESERVERS

  • Song, Seok-Zun;Kang, Mun-Hwan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1525-1532
    • /
    • 2011
  • The $m{\times}n$ Boolean matrix A is said to be of Boolean rank r if there exist $m{\times}r$ Boolean matrix B and $r{\times}n$ Boolean matrix C such that A = BC and r is the smallest positive integer that such a factorization exists. We consider the the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

General Linear Group over a Ring of Integers of Modulo k

  • Han, Juncheol
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.255-260
    • /
    • 2006
  • Let $m$ and $k$ be any positive integers, let $\mathbb{Z}_k$ the ring of integers of modulo $k$, let $G_m(\mathbb{Z}_k)$ the group of all $m$ by $m$ nonsingular matrices over $\mathbb{Z}_k$ and let ${\phi}_m(k)$ the order of $G_m(\mathbb{Z}_k)$. In this paper, ${\phi}_m(k)$ can be computed by the following investigation: First, for any relatively prime positive integers $s$ and $t$, $G_m(\mathbb{Z}_{st})$ is isomorphic to $G_m(\mathbb{Z}_s){\times}G_m(\mathbb{Z}_t)$. Secondly, for any positive integer $n$ and any prime $p$, ${\phi}_m(p^n)=p^{m^2}{\cdot}{\phi}_m(p^{n-1})=p{^{2m}}^2{\cdot}{\phi}_m(p^{n-2})={\cdots}=p^{{(n-1)m}^2}{\cdot}{\phi}_m(p)$, and so ${\phi}_m(k)={\phi}_m(p_1^n1){\cdot}{\phi}_m(p_2^{n2}){\cdots}{\phi}_m(p_s^{ns})$ for the prime factorization of $k$, $k=p_1^{n1}{\cdot}p_2^{n2}{\cdots}p_s^{ns}$.

  • PDF