• Title/Summary/Keyword: insulin sensitizer

Search Result 15, Processing Time 0.017 seconds

Anti-hyperglycemic and Anti-hyperlipidemic Activities of Acanthopanax Senticosus Herbal Acupuncture in C57BL/6J ob/ob Mice

  • Lee, Sang-Keel;Kim, Yong-Suk;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.1-19
    • /
    • 2006
  • Objectives : The aim of this study was to investigate the hypoglycemic and hypolipidemic activities and mechanisms of Acanthopanax senticosus (AS) herbal acupuncture. Methods : Anti-diabetic and anti-steatotic activity of the AS herbal acupuncture was investigated on C57BL/6J ob/ob mice. After random grouping at the age of 9 weeks, the herbal acupuncture groups were injected subcutaneously at the left and right Gansu (BL18) corresponding acupuncture points alternately on exactly the same time every day with 0.1ml of either 400 mg/kg or 800 mg/kg of AS (AS400 and AS800) for 8-week period. As a positive control, metformin was administrated at a dose of 300 mg/kg (MT300). Body weights were measured weekly, and on every other week blood was collected for blood glucose analysis. At the end of study, blood was also collected for determination of plasma insulin and lipid levels, after which they were killed and periepidydimal fat, liver, muscle, and pancreas were immediately removed. The removed tissues were instantly soaked in liquid nitrogen and stored at $-70^{\circ}C$ for morphological examination and mRNA analysis. Results : The AS herbal acupuncture significantly prevented weight gain on C57BL/6J ob/ob mice. The AS herbal acupuncture lowered blood glucose and improved glucose tolerance in C57BL/6J ob/ob mice. The increase of insulin response during the OGTT was inhibited by the AS herbal acupuncture. Insulin sensitivity of skeletal tissue was enhanced. Plasma lipid levels were significantly improved in the AS herbal acupuncture groups. The AS herbal acupuncture decreased hepatic lipogenesis and hepatic triglyceride production, and increased fatty acid (FA) transporter that involves in FA uptake. The AS herbal acupuncture inhibited the increase of liver mass by prevention of the accumulation of TG but did not inhibit weight gain of fat tissue on C57BL/6J ob/ob mice. Conclusion : In summary, we have demonstrated several unique properties of the AS herbal acupuncture in decreasing body weight, and reversing insulin resistance and hepatic steatosis in ob/ob mice. This AS herbal acupuncture acts as an insulin sensitizer and specifically decreases circulating glucose and lipids, and suppresses hepatic lipogenesis.

  • PDF

Effect of Sasa Borealis and White Lotus Roots and Leaves on Insulin Action and Secretion In Vitro (In vitro에서 조릿대, 연근과 연잎이 인슐린 작용 및 분비에 미치는 영향)

  • Ko, Byoung-Seob;Jun, Dong-Wha;Jang, Jin-Sun;Kim, Ju-Ho;Park, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.114-120
    • /
    • 2006
  • Anti-diabetic effects of extracts and fractions of Sasa borealis (SB), white lotus roots (LR) and leaves (LL), and their mixture were determined in 3T3-L1 adipocytes and Min6 cells by investigating insulin-sensitizing activity and glucose-stimulated insulin secretion, respectively. SB, LR, LL, and mixture of SB, LR, and LL (3 : 2 : 3) were extracted using 70% ethanol, and m mixture extract was fractionated by XAD-4 column chromatography with serial mixture solvents of methanol and water. Fractional extractions were utilized for anti-diabetic effect assay. SB and LR extracts increased insulin-stimulated glucose uptake, but not as much as mixture of SB, LR, and LL. Significant insulin-sensitizing activities of 20 and 80% methanol fractions of SB, LR, and LL mixture extract were observed in 3T3-L1 adipocytes, giving 0.5 or $5\;{\mu}g/mL$ each fraction with 0.2 nM insulin to attain glucose uptake level similar to that attained by 10 nM insulin alone. Similar to pioglitazone, peroxisome proliferators-activated $receptor-{\gamma}\;(PPAR-{\gamma})$ agonist, 20 and 80% methanol fractions increased adipocytes by stimulating differentiation from fibroblasts and triglyceride synthesis. LL extract and 20, 60, and 80% methanol fractions of the mixture suppressed ${\alpha}-amylase$ activity, but did not modulate insulin secretion capacity of Min6 cells in both low and high glucose media. These data suggest 20 and 80% methanol tractions contain potential insulin sensitizers with functions similar to that of $PPAR-{\gamma}$ agonist. Crude extract of SB, LR, and LL mixture possibly improves glucose utilization by enhancing insulin-stimulated glucose uptake and inhibiting carbohydrate digestion without affecting insulin secretion in vivo.

Hypoglycemic Effects of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription (당뇨 처방에 근거한 생약재 복합물의 혈당강하 효과)

  • Kim, Jung-Ok;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.923-929
    • /
    • 2011
  • For the purpose of investigating the in vitro antidiabetic activity of a medicinal herb mixture prepared through traditional antidiabetic prescription, the study analyzed the existence of insulin-similar components and examined ${\alpha}$-amylase and ${\alpha}$-glucosidase inhibition activity. As a result of arranging the medicinal herb mixture extracts over the 3T3-L1 fibroblast in the concentration of $10{\mu}g/mL$, which confirmed that it included much of insulin sensitizer components as 151.7% in the differentiation of 3T3-L1 fibroblast. The inhibition activity against ${\alpha}$-amylase of the medicinal herb mixture extracts as hypoglycemic agent were 38.4, 31.5 and 16.6% in the concentration of 10.0, 1.0 and 0.1 mg/mL, respectively. The inhibition activity against ${\alpha}$-glucosidase of the medicinal herb mixture extracts were 81.3, 35.8 and 26.7% in the concentration of 10.0, 1.0 and 0.1 mg/mL, respectively. The inhibition activity against ${\alpha}$-glucosidase in the ethyl acetate fractions of the water and 80% ethanol extracts were 66.9% and 55.1%, respectively, the highest levels in the various solvent extracts.

Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression

  • Zhou, Da;Chen, Yuan-Wen;Zhao, Ze-Hua;Yang, Rui-Xu;Xin, Feng-Zhi;Liu, Xiao-Lin;Pan, Qin;Zhou, Huiping;Fan, Jian-Gao
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.2.1-2.12
    • /
    • 2018
  • Glucagon-like peptide-1 (GLP-1) has a broad spectrum of biological activity by regulating metabolic processes via both the direct activation of the class B family of G protein-coupled receptors and indirect nonreceptor-mediated pathways. GLP-1 receptor (GLP-1R) agonists have significant therapeutic effects on non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. However, clinical studies indicated that GLP-1 treatment had little effect on hepatic steatosis in some NAFLD patients, suggesting that GLP-1 resistance may occur in these patients. It is well-known that the gut metabolite sodium butyrate (NaB) could promote GLP-1 secretion from intestinal L cells. However, it is unclear whether NaB improves hepatic GLP-1 responsiveness in NAFLD. In the current study, we showed that the serum GLP-1 levels of NAFLD patients were similar to those of normal controls, but hepatic GLP-1R expression was significantly downregulated in NAFLD patients. Similarly, in the NAFLD mouse model, mice fed with a high-fat diet showed reduced hepatic GLP-1R expression, which was reversed by NaB treatment and accompanied by markedly alleviated liver steatosis. In addition, NaB treatment also upregulated the hepatic p-AMPK/p-ACC and insulin receptor/insulin receptor substrate-1 expression levels. Furthermore, NaB-enhanced GLP-1R expression in HepG2 cells by inhibiting histone deacetylase-2 independent of GPR43/GPR109a. These results indicate that NaB is able to prevent the progression of NAFL to NASH via promoting hepatic GLP-1R expression. NaB is a GLP-1 sensitizer and represents a potential therapeutic adjuvant to prevent NAFL progression to NASH.

Effects of Long-Term High-Fat Diet Feeding on Gene Expression of Inflammatory Cytokines in Mouse Adipose Tissue

  • Oh, Nu-Ri;Hwang, Ae-Rang;Jeong, Ja-In;Park, Sung-Hyun;Yang, Jin-Seok;Lee, Yong-Ho
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2012
  • This study was to investigate the effects of high-fat diet feeding for a very long period of time on gene expression of inflammatory cytokines in mouse adipose tissue and to determine whether caloric restriction (CR) or insulin sensitizer treatment changes the cytokine gene expressions even in obese mice fed a high-fat diet for a very long term-period. Gene expression levels of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) were examined by real-time PCR in subcutaneous abdominal adipose tissue (SubQ) from obese and non-obese male C57BL/6 mice at 16, 26, 36, 47, and 77 weeks of age on either normal diet (ND) or high-fat diet (HFD) after starting at 6 weeks of age. In addition, gene expression levels of TNF-${\alpha}$, IL-6 and MCP-1 were determined in SubQ before and after rosiglitazone treatment or CR on 47-week-old obese mice. The results demonstrated that gene expression levels of TNF-${\alpha}$, IL-6 and MCP-1 were significantly increased with aging in SubQ of mice in both groups of diet. MCP-1 gene expression of SubQ in all ages tested was significantly or marginally increased in mice on HFD compared with ND. While TNF-${\alpha}$ expression was significantly reduced by rosiglitazone, IL-6 and MCP-1 were significantly decreased by CR. The basic data in this study will be useful for characterizing the C57BL/6 mouse as an animal model of obesity induced by high-fat diet feeding for a very long period of time, and a better understanding of inflammatory cytokine regulation in diet induced obesity which may facilitate the development of new therapeutic strategies to prevent the complications of obesity.