• Title/Summary/Keyword: insulation property

검색결과 272건 처리시간 0.023초

Studies on the Thermal Insulation Effect of Bedding(III) - Thermal Insulation Effect of Underquilt - (이부자리 보온력에 관한 연구(III) - 요의 보온력 -)

  • Lee, Song-Ja;Sung, Su-Kwang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제17권2호
    • /
    • pp.301-306
    • /
    • 1993
  • Since the underquilt has an important role of supporting the human body in sleeping, it needs to sustain ample degrees of hardness, elasticity, humidity absorption, and warmth retention property and also to have the two ergonimical requirements : It should not be too soft to allow human bodies to sink in, and that it should be comfortable for humans to tum over in sleeping. This study aims to investigate the effect of the thermal insulation of the variation in weight applied to the underquilt. For this purpose, six items were selected as filling materials for the underquilt : cotton, wool, silk, down, polyester, cotton/ployester. Various weights were applied to each of the underquilts to survey the reduction tendency of its thermal insulation effect. The results are as follow : 1. The Thermal insulation effect of each underquilt decreased in an exponetial function as the weight on the underquilt was increased. 2. The thermal reduction curves according to the load weight insrease were shown to be constant in shape regardless of the weight increase. 3. At the weight of more than $25kg/m^2$ the degree of the thermal insulation effect of each underquilt was found to be in order of down>cotton>silk>polyester>wool>cotton/ployester. 4. The variation in load weight applied to each underquilt was shown to be in reverse correlation with the thermal insulation effect. An estimated regression formula can be made on the data.

  • PDF

Consumer recognition and mechanical property comparison of wetsuit material for diving (다이빙용 웨트수트(wetsuit) 소재에 대한 소비자 인식조사와 물성 비교)

  • Sang, Jeong Seon;Oh, Kyung Wha
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • 제20권4호
    • /
    • pp.163-174
    • /
    • 2018
  • Consumer and property evaluation of wetsuit materials were conducted to obtain useful data for developing competitive products that meet consumer expectations and improving industrial competitiveness. Data were collected through online surveys of 213 domestic consumers who have experienced wearing wetsuit among marine leisure activities. Five types of commercial wet suit materials by brand and four types of commercial wet suit materials with the same quality by thickness were collected. Then, their physical properties, salt water resistance and thermal insulation rate were evaluated and compared. As a result, the most commonly used wetsuit material is 3 to 5 mm thick, and the basic jersey material is bonded on both sides. As a processing for imparting functionality, processing for improving warmth and reducing surface resistance are most frequently used. Consumers often feel uncomfortable when wearing a wetsuit, such as wearing comfort, weight, ease of movement, stretchability, and clothing pressure, which are different from those of casual wear. Also, mechanical strength and warmth were considered to be the most important criteria for selection of wetsuit material for purchase or rental. The mechanical properties of brand A and B were better than those of brand C, D, and E. Resilience and thermal shrinkage were better in brand C, D, and E. On the other hand, there was no significant difference in the physical properties due to the difference in thickness of the material at the same quality. Also, it was found that the thicker the material, the more stable it is in the heat. Brand A and B had superior salt water resistance than brand C, D, and E. In the thermal insulation test, brand A and B showed better insulation characteristics than brand C, D, and E, but the types of bonded fabric and surface finishing of materials were thought to have affected. In comparison of the thickness, the thicker the materials, the better the salt resistance and the thermal insulation.

Generalized Stability Criterion for Multi-module Distributed DC System

  • Liu, Fangcheng;Liu, Jinjun;Zhang, Haodong;Xue, Danhong
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.143-155
    • /
    • 2014
  • The stability issues of a multi-module distributed DC power system without current-sharing loop are analyzed in this study. The physical understanding of the terminal characteristics of each sub-module is focused on. All the modules are divided into two groups based on the different terminal property types, namely, impedance (Z) and admittance (Y) types. The equivalent circuits of each group are established to analyze the stability issues, and the mathematical equations of the equivalent circuits are derived. A generalized criterion for multi-module distributed systems is proposed based on the stability criterion in a cascade system. The proposed criterion is independent of the power flow direction.

AC Insulation Breakdown Properties of the EMNC to Application of Distribution Molded Transformer (배전용 몰드변압기 적용을 위한 EMNC의 교류절연파괴특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제62권5호
    • /
    • pp.649-656
    • /
    • 2013
  • A conventional epoxy-microsilica composite (EMC) and an epoxy-microsilica-nanosilicate composite (EMNC) were prepared in order to apply them to mold-type transformers, current transformers (CT) and potential transformers (PT). Nanosilicate was exfoliated in a epoxy resin using our electric field dispersion process and AC insulation breakdown strength at $30{\sim}150^{\circ}C$, glass transition temperature and viscoelasticity were studied. AC insulation breakdown strength of EMNC was higher than that of EMC and that value of EMNC was far higher at high temperature. Glass transition temperature and viscoelasticity property of EMNC was higher than those of EMC at high temperature. These results was due to the even dispersion of nanosilicates among the nanosilicas, which could be observed using transmission electron microscopy (TEM). That is, the nanosilicates interrupt the electron transfer and restrict the mobility of the epoxy chains.

Temperature on structural steelworks insulated by inorganic intumescent coating

  • Choi, J. Yoon;Choi, Sengkwan
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.1-14
    • /
    • 2013
  • Predicting the fire resistance of structures has been significantly advanced by full scale fire tests in conjunction with improved understanding of compartmental fire. Despite the progress, application of insulation is still required to parts of structural steelwork to achieve over 60 minutes of fire rating. It is now recognised that uncertainties on insulation properties hinder adaptation of performance based designs for different types of structures. Intumescent coating has recently appeared to be one of most popular insulation types for steel structures, but its design method remains to be confirmed by empirical data, as technical difficulties on the determination of the material properties at elevated temperatures exist. These need to take into account of further physiochemical transitions such as moving boundary and endothermic reaction. The impetus for this research is to investigate the applicability of the conventional differential equation solution which examines the temperature rise on coated steel members by an inorganic intumescent coating, provided that the temperature-dependent thermal/mechanical insulation properties are experimentally defined in lab scale tests.

Partial Discharge Ultrasonic Analysis for Generator Stator Windings

  • Yang, Yong-Ming;Chen, Xue-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.670-676
    • /
    • 2014
  • The objective of this research is to utilize the ultrasonic method to analyze the property of partial discharge (PD) which is generated by the winding of the insulation stator in the generator. Therefore, a PD measurement system is built based on ultrasonic and virtual instruments. Three types of PD models (internal PD model, surface PD model and slot PD model) have been constructed. With the analysis of these experimental results, this research has identified the ultrasonic signals of the discharges which were produced by three types of PD models. This analysis shows the different features among these PD types. Both the time domain and frequency domain of the ultrasonic signals are obviously different. In addition, an experiment based on a large rotating machine has been done to analyze ultrasonic noises. The result indicates that the ultrasonic noises can be wiped off by the filters and algorithms. The application of this system is convenient for the detection of early signs of insulation failure, which is an effective method for diagnosis of insulation faults.

Field analysis of end_turn coil of HV induction motor (고압 회전기에서 코일 단부의 전계 해석)

  • Park, Seung-Bae;Kim, Do-Wan;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.70-72
    • /
    • 1998
  • Because of using PWM inverters and converters. The problems of insulation breakdown is emerging in both high voltage motors and general motors. In conventional methods, the viewpoint of surge problems is wave propagation with or without cable and inverter. For the purpose of knowing the situation of insulation breakdown, the end-turn coil of windings in the motor winding insulation structure is modelled by FEM, and field analysis of that is done. For first step, only end-turn coil is modelled and the model is simulated with FEM by approximating the resistivity of metallic foil surrounding insulation layers with having nonlinear property. Next, the result of simulation with nonlinear resistivity are compared with the result of linear resistivity. Because of microscope analysis, there is the problem of generalization but the situation of corona discharge in end-turn coil will be explained from this simulation.

  • PDF

The Electric Characteristics of the Thermal Aged Insulation-Paper with Moisture Content on the Transformer (변압기 절연지의 수분함량 및 열화에 따른 전기적 특성 연구)

  • Kim, Pil-Hwan;Kim, Ju-Han;Lee, Byung-Sung;Lee, Won-Yeong;Kim, Do-Young;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1909-1911
    • /
    • 2004
  • It is caused that insulation paper, which had got a lot of thermal stress by over-load after installation, should have been deteriorated in electrical and mechanical characteristics. Beside, insulation material is decreased the insulating property and accelerated aging of them in case of dielectric loss when transformers are manufactured with some moisture or transformers would have been them because of moisture-permeation, Therefore, in this study we experienced the influence of moisture content in case of the thermal aged insulation paper. we have measured tan ${\delta}$ and breakdown voltage in the ratio of paper' moisture content before the aging and then taken the same tests again after insulation paper thermally accelerating-aged. There is a purpose to gain data for a life-design and to establish aging mechanism in order to continuously study life expectancy of the insulation paper.

  • PDF

Chemical Properties of Insulation Paper in oil after Thermal Aging (열 열화에 따른 유입절연지의 화학적 특성)

  • Kim, Pil-Hwan;Kim, Jae-Hoon;Kim, Ju-Han;Lee, Won-Yeong;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.77-79
    • /
    • 2004
  • It is caused that insulation paper, which had got a lot of thermal stress by over-load after installation, should have been deteriorated in electrical and mechanical characteristics. Beside, insulation material is decreased the insulating property and accelerated aging of them in case of dielectric loss when transformers are manufactured with some moisture or transformers would have been them because of moisture-permeation. Therefore, in this study we experienced the influence of moisture content in case of the thermal aged insulation paper. we have measured tan 6 and breakdown voltage in the ratio of paper' moisture content before the aging and then taken the same tests again after insulation paper thermally accelerating-aged. There is a purpose to gain data for a life-design and to establish aging mechanism in order to continuously study life expectancy of the insulation paper

  • PDF