• Title/Summary/Keyword: instrument: infrared spectrograph

Search Result 25, Processing Time 0.027 seconds

Auto-guiding Performance from IGRINS Test Observations (Immersion GRating INfrared Spectrograph)

  • Lee, Hye-In;Pak, Soojong;Le, Huynh Anh N.;Kang, Wonseok;Mace, Gregory;Pavel, Michael;Jaffe, Daniel T.;Lee, Jae-Joon;Kim, Hwihyun;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.92.1-92.1
    • /
    • 2014
  • In astronomical spectroscopy, stable auto-guiding and accurate target centering capabilities are critical to increase the achievement of high observation efficiency and sensitivity. We developed an instrument control software for the Immersion GRating INfrared Spectrograph (IGRINS), a high spectral resolution near-infrared slit spectrograph with (R=40,000). IGRINS is currently installed on the McDonald 2.7 m telescope in Texas, USA. We had successful commissioning observations in March, May, and July of 2014. The role of the IGRINS slit-viewing camera (SVC) is to move the target onto the slit, and to provide feedback about the tracking offsets for the auto-guiding. For a point source, we guide the telescope with the target on the slit. While for an extended source, we use another a guide star in the field offset from the slit. Since the slit blocks the center of the point spread function, it is challenging to fit the Gaussian function to guide and center the target on slit. We developed several center finding algorithms, e.g., 2D-Gaussian Fitting, 1D-Gaussian Fitting, and Center Balancing methods. In this presentation, we show the results of auto-guiding performances with these algorithms.

  • PDF

Infrared Spectro-Polarimeter of the Solar Flare Telescope at NAOJ

  • Hagino, Masaoki;Sakurai, Takashi;Hanaoka, Yoichiro;Shinoda, Kazuya;Noguchi, Motokazu;Miyashita, Masakuni;Fukuda, Takeo;Suzuki, Isao;Arai, Takehiko;Takeyama, Norihide
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • A new infrared spectro-polarimeter was installed in 2008 onto the Solar Flare Telescope of NAOJ in the Mitaka headquarters. The Solar Flare Telescope had been operated previously as a filter-based magnetograph and obtained vector magnetograms of active regions with the Fe I 630.3nm line during 1992 - 2005. The aim of this new instrument is to measure the distribution of magnetic helicity over the whole Sun and for an extended period with high magnetic sensitivity in the infrared wavelengths. This spectro-polarimter is able to obtain polarizations in both photospheric and chromospheric layers. In order to take full Stokes profiles, we observe Fe I 1564.8 nm and He I 1083.0 nm lines (with the neighboring photospheric Si line) for the photospheric and chromospheric magnetic field vectors, respectively. The infrared detector of this instrument is a $640{\times}512$-pixel InGaAs camera produced by a Belgian company Xenics. The frame rate of the camera is 90 frames/sec. The 640-pixel row of this camera is set along the spectrograph slit of the polarimeter. Since the slit only covers the solar hemisphere, a full disk map is obtained by raster scanning the solar disk twice. A magnetic map is made of about $1200{\times}1200$ pixels with a pixel size of 1.8 arcsec. It generally takes 1.5 hours to scan the whole Sun. Although some issues on the instrument calibration still remain, a few maps of the whole Sun at the two wavelengths are now taken daily. In this presentation, we will introduce the instrument and present some observational results.

  • PDF

IGRINS : Collimating Mirror Mount Opto-mechanical Design

  • Rukdee, Surangkhana;Park, Chan;Chun, Moo-Young;Yuk, In-Soo;Lee, Sung-Ho;Lee, Han-Shin;Kim, Kang-Min;Jeong, Hwa-Kyung;Strubhar, Joseph;Jaffe, Daniel T.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.4-31
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF

The circumstellar disk and wide-orbit companion candidates arund T-Tauri Star

  • Oh, Daehyun;Tamura, Motohide;Wako, Aoki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.71.1-71.1
    • /
    • 2015
  • We prensent the near-infrared(NIR) images of the asymmetric circumstellar disk around a T-Tauri star in the ${\rho}$ Ophiuchi star-forming region, and two faint stellar objects around central star. These results were obtainted with the Subaru Telescope with HiCIAO(the High-Contrast Instrument with Adaptive Optics) and IRCS(the InfraRed Camera and Spectrograph). The disk shows center-offset from the star and a strong morphological asymmetry along both the major and minor axis. The physical conditions in the disk is derived from the infrared visibilites results and the complete spectral energy distribution using HOCHUNK3D, Monte-Carlo radiative transfer code. Two companion candidates are separated by 11.6 arcsec(~1450 au at 125 parsec) and 4.34 arcsec(~540 au at 125 parsec). This could be the first case, which imaged both of planetary mass companions and disk around same star. We discuss physical structures of the disk, and probablity that two candidates are real companions.

  • PDF

IGRINS : 1st Year Operation & Future Plan

  • Lee, Jae-Joon;Kim, Hwihyun;Hwange, Narae;Park, Chan;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.43.1-43.1
    • /
    • 2015
  • After successful commissioning observations in 2014, Immersion Grating Infrared Spectrograph (IGRINS) has been conducting its normal scientific operations on the 2.7m Harlan J. Smith telescope at the McDonald Observatory and has been producing high spectral resolution near-infrared spectroscopic data in excellent quality. We will present the current status of the instrument and its software packages, and highlight initial scientific results. In particular, we will discuss possibilities of having IGRINS on larger telescopes.

  • PDF

IGRINS Exposure Time Calculator

  • Le, Huynh Anh Nguyen;Pak, Soojong;Sim, Chae Kyung;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2013
  • We present the Exposure Time Calculator of IGRINS (Immersion Grating Infrared Spectrograph). The noises of IGRINS and the simulated emission line can be calculated from the combination of Telluric background emission and absorptions, the emission and transmission of the telescope and instrument optics, and the dark noise and the read noise of the infrared arrays. For the atmospheric transmissions, we apply the simulated spectra depending on the Precipitable Water Vapor (PWV) values. In case of calculation of noises, the user needs to input the expected target magnitude, the weather conditions, and the desired exposure time. In addition to the simulated emission line, the parameters of rest wavelength, line-flux, Doppler shift and line-width are needed. The output would be the expected signal-to-noise for each spectral resolution element. The source-code of IGRINS-ETC v2.1.1 is available to be downloaded on the World Wide Web.

  • PDF

Status Report of GMTNIRS Development

  • Yuk, In-Soo;Lee, Sung-Ho;Chun, Moo-Young;Kim, Kang-Min;Park, Chan;Pak, Soo-Jong;Oh, Hee-Young;Lee, Sang-On;Lee, Han-Shin;Jaffe, Daniel T.;Pyo, Tae-Soo;Park, Byeong-Gon;Kim, Young-Soo;Kyeong, Jae-Mann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.61.2-61.2
    • /
    • 2010
  • GMTNIRS (the GMT Near Infrared Spectrograph) is one of the first generation instrument candidates for GMT (Giant Magellan Telescope). Conceptual design studies for nine instruments were proposed last year, and the GMT organization selected 6 instruments including GMTNIRS for the next phase. GMTNIRS will be developed by an international collaboration between KASI and UT(University of Texas). KASI and UT have been also developing IGRINS (the Immersion Grating Infrared Spectrometer) which is a fore-runner instrument of GMTNIRS since 2009. In this talk, we will present the instrument details and development plan, and discuss the science case for GMTNIRS.

  • PDF

IGRINS : Mirror Mounts Optomechanical Design

  • Rukdee, Surangkhana;Park, Chan;Lee, Sung-Ho;Jaffe, Daniel T.;Lee, Han-Shin;Oh, Hee-Young;Jung, Hwa-Kyung;Yuk, In-Soo;Strubhar, Joseph;Kim, Kang-Min;Chun, Moo-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.155.1-155.1
    • /
    • 2011
  • The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS (Immersion Grating Infrared Spectrograph). The white-pupil design of the instrument optics uses 7 cryogenic mirrors including 3 aspherical off-axis collimators and 4 flat fold mirrors. Two of the 3 collimators are H- and K-band pupil transfer mirrors and they are designed as compensators for the system alignment in each channel. Therefore, their mount design will be one of the most sensitive parts in the IGRINS optomechanical system. The other flat fold mirrors are designed within the limited area. Each of those includes the features of 3 axial hard points and 2 radial hard points with one spring plunger in order for the proper deflection of the mirror. The design work will include the computer-aided 3D modeling and finite element analysis (FEA) to optimize the structural stability and the thermal behavior of the mount models. The mount body will also include a tip-tilt and translation adjustment mechanism to be used as the alignment compensators.

  • PDF

IGRINS Mirror Mount Design for Five Flat Mirrors

  • Oh, Jae Sok;Park, Chan;Kim, Kang-Min;Chun, Moo-Young;Yuk, In-Soo;Yu, Young Sam;Oh, Heeyoung;Jeong, Ueejeong;Lee, Hanshin;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.91.2-91.2
    • /
    • 2014
  • A near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS) has been jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. The compact white-pupil design of the instrument optics includes five cryogenic flat mirrors including a slit mirror, an input fold mirror, a dichroic mirror, and H&K camera fold mirrors. In this study, we introduce the optomechanical mount designs of the five cryogenic mirrors. In order to meet the structural stability and thermal requirements of the mount models, we conducted the design work with the aid of 3-dimensional computer modeling and the finite element analysis (FEA) method. We also present the actual fabricated parts and assemblies of the mounts and mirrors as well as their CAD models.

  • PDF

The solar photospheric and chromospheric magnetic field as observed in the near-infrared

  • Collados, Manuel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.31.4-32
    • /
    • 2016
  • Observing the solar atmosphere with ground-based telescopes in the near-infrared has a number of advantages when compared to classical measurements in visible wavelengths. One of them comes from the magnetic sensitivity of spectral lines, which varies as ${\lambda}_g$, where g is the effective $Land{\acute{e}}$ factor of the transition. This wavelength dependence makes the near-infrared range adequate to study subtle spatial or temporal variations of the magnetic field. Spectral lines, such as the photospheric Fe I $1.5648{\mu}m$ spectral line, with a $Land{\acute{e}}$ factor g=3, have often been used in the past for this type of studies. To study the chromosphere, the Ca II IR triplet and the He I $1.0830{\mu}m$ triplet are the most often observed lines. The latter has the additional advantage that the photospheric Si I $1.0827{\mu}m$ is close enough so that photosphere and chromosphere can be simultaneously recorded with a single detector in a spectrograph. The instrument TIP (Tenerife Infrared Polarimeter) has been continuously operating since 1999 at the 70-cm German VTT of the Observatorio del Teide and has been recently moved to the 1.5-m German GREGOR. During all this time, results have been obtained concerning the nature of the weak photospheric magnetic field of the quiet sun, magneto-acoustic wave propagation, evolution with the cycle of sunspot magnetic fields, photospheric and chromospheric magnetic field in emerging regions, magnetic field in chromospheric structures such as filaments, prominences, flares, and spicules, etc. In this talk, I will review the main results obtained after all these observations and mention the main challenges for the future. With its novel polarization-free design and a complete suite of instruments aimed at simultaneous (imaging and spectroscopic) observations of the solar photosphere and chromosphere, the EST (European Solar Telescope) will represent a major world-wide infrastructure to understand the physical nature of all these phenomena.

  • PDF