• Title/Summary/Keyword: instruction set architecture

Search Result 88, Processing Time 0.021 seconds

Accelerating Symmetric and Asymmetric Cryptographic Algorithms with Register File Extension for Multi-words or Long-word Operation (다수 혹은 긴 워드 연산을 위한 레지스터 파일 확장을 통한 대칭 및 비대칭 암호화 알고리즘의 가속화)

  • Lee Sang-Hoon;Choi Lynn
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.1-11
    • /
    • 2006
  • In this paper, we propose a new register file architecture called the Register File Extension for Multi-words or Long-word Operation (RFEMLO) to accelerate both symmetric and asymmetric cryptographic algorithms. Based on the idea that most of cryptographic algorithms heavily use multi-words or long-word operations, RFEMLO allows multiple contiguous registers to be specified as a single operand. Thus, a single instruction can specify a SIMD-style multi-word operation or a long-word operation. RFEMLO can be applied to general purpose processors by adding instruction set for multi-words or long-word operands and functional units for additional instruction set. To evaluate the performance of RFEMLO, we use Simplescalar/ARM 3.0 (with gcc 2.95.2) and run detailed simulations on various symmetric and asymmetric cryptographic algorithms. By applying RFEMLO, we could get maximum 62% and 70% reductions in the total instruction count of symmetric and asymmetric cryptographic algorithms respectively. Also, performance results show that a speedup of 1.4 to 2.6 can be obtained in symmetric cryptographic algorithms and a speedup of 2.5 to 3.3 can be obtained for asymmetric cryptographic algorithms when we apply RFEMLO to a processor with an in-order pipeline. We also found that RFEMLO can effectively improve the performance of these cryptographic algorithms with much less cost compared to issue-width increase available in Superscalar implementations. Moreover, the RFEMLO can also be applied to Superscalar processor, leading to additional 83% and 138% performance gain in symmetric and asymmetric cryptographic algorithms.

Low-Complexity Deeply Embedded CPU and SoC Implementation (낮은 복잡도의 Deeply Embedded 중앙처리장치 및 시스템온칩 구현)

  • Park, Chester Sungchung;Park, Sungkyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.699-707
    • /
    • 2016
  • This paper proposes a low-complexity central processing unit (CPU) that is suitable for deeply embedded systems, including Internet of things (IoT) applications. The core features a 16-bit instruction set architecture (ISA) that leads to high code density, as well as a multicycle architecture with a counter-based control unit and adder sharing that lead to a small hardware area. A co-processor, instruction cache, AMBA bus, internal SRAM, external memory, on-chip debugger (OCD), and peripheral I/Os are placed around the core to make a system-on-a-chip (SoC) platform. This platform is based on a modified Harvard architecture to facilitate memory access by reducing the number of access clock cycles. The SoC platform and CPU were simulated and verified at the C and the assembly levels, and FPGA prototyping with integrated logic analysis was carried out. The CPU was synthesized at the ASIC front-end gate netlist level using a $0.18{\mu}m$ digital CMOS technology with 1.8V supply, resulting in a gate count of merely 7700 at a 50MHz clock speed. The SoC platform was embedded in an FPGA on a miniature board and applied to deeply embedded IoT applications.

A Low Power 16-Bit RISC Microprocessor Using ECRL Circuits

  • Shin, Young-Joon;Lee, Chan-Ho;Moon, Yong
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.513-519
    • /
    • 2004
  • This paper presents a low power 16-bit adiabatic reduced instruction set computer (RISC) microprocessor with efficient charge recovery logic (ECRL) registers. The processor consists of registers, a control block, a register file, a program counter, and an arithmetic and logical unit (ALU). Adiabatic circuits based on ECRL are designed using a $0.35{\mu}m$ CMOS technology. An adiabatic latch based on ECRL is proposed for signal interfaces for the first time, and an efficient four-phase supply clock generator is designed to provide power for the adiabatic processor. A static CMOS processor with the same architecture is designed to compare the energy consumption of adiabatic and non-adiabatic microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is about 1/3 compared to that of the static CMOS microprocessor.

  • PDF

A Flexible Programmable Memory BIST for Embedded Single-Port Memory and Dual-Port Memory

  • Park, Youngkyu;Kim, Hong-Sik;Choi, Inhyuk;Kang, Sungho
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.808-818
    • /
    • 2013
  • Programmable memory built-in self-test (PMBIST) is an attractive approach for testing embedded memory. However, the main difficulties of the previous works are the large area overhead and low flexibility. To overcome these problems, a new flexible PMBIST (FPMBIST) architecture that can test both single-port memory and dual-port memory using various test algorithms is proposed. In the FPMBIST, a new instruction set is developed to minimize the FPMBIST area overhead and to maximize the flexibility. In addition, FPMBIST includes a diagnostic scheme that can improve the yield by supporting three types of diagnostic methods for repair and diagnosis. The experiment results show that the proposed FPMBIST has small area overhead despite the fact that it supports various test algorithms, thus having high flexibility.

Core-A: A 32-bit Synthesizable Processor Core

  • Kim, Ji-Hoon;Lee, Jong-Yeol;Ki, Ando
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.83-88
    • /
    • 2015
  • Core-A is 32-bit synthesizable processor core with a unique instruction set architecture (ISA). In this paper, the Core-A ISA is introduced with discussion of useful features and the development environment, including the software tool chain and hardware on-chip debugger. Core-A is described using Verilog-HDL and can be customized for a given application and synthesized for an application-specific integrated circuit or field-programmable gate array target. Also, the GNU Compiler Collection has been ported to support Core-A, and various predesigned platforms are well equipped with the established design flow to speed up the hardware/software co-design for a Core-A-based system.

Simulation and Synthesis of RISC-V Processor (RISC-V 프로세서의 모의실행 및 합성)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.239-245
    • /
    • 2019
  • RISC-V is a free and open ISA enabling a new era of processor innovation through open standard collaboration. Born in academia and research, RISC-V ISA delivers a new level of free, extensible software and hardware freedom on architecture, paving the way for the next 50 years of computing design and innovation. In this paper, according to the emergence of RISC-V architecture, we describe the RISC-V processor instruction set constituted by arithmetic logic, memory, branch, control, status register, environment call and break point instructions. Using ModelSim and Quartus-II, 38 instructions of RISC-V has been successfully simulated and synthesized.

Steel frame fragility curve evaluation under the impact of two various category of earthquakes

  • Wang, Feipeng;Miao, Jie;Fang, Zhichun;Wu, Siqi;Li, Xulong;Momeni, Younes
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • One of the key tools in assessing the seismic vulnerability of the structures is the use of fragile functions, which is the possibility of damage from a particular damage surface for several levels of risk from the seismic movements of the earth. The aim of this study is to investigate the effect of two categories of earthquake events on the fragile curve (FRC) of the steel construction system. In this study, the relative lateral displacement of the structures is considered as a damage criterion. The limits set for modifying the relative lateral position in the HAZUS instruction are used to determine the failure modes, which include: slight, moderate, extensive and complete. The results show, as time strong-motion increases, the probability of exceeding (PoE) increases (for Peak ground acceleration (PGA) less than 0.5). The increase in seismic demand increases the probability of exceeding. In other words, it increases the probability of exceeding, if the maximum earthquake acceleration increases. Also, 7-storey model in extensive mode has 20 and 26.5% PoE larger than 5- and 3-storey models, respectively.

FPGA Implementation and Verification of RISC-V Processor (RISC-V 프로세서의 FPGA 구현 및 검증)

  • Jongbok Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.115-121
    • /
    • 2023
  • RISC-V is an open-source instruction set architecture, and anyone can freely design and implement a RISC-V microprocessor. This paper designes and simulates the RISC-V architecture, synthesizing it in FPGA and verifying it using logic analyzer (ILA). RISC-V core is written in SystemVerilog, which has efficient design and high reusability, and can be used in various application fields. The RISC-V core is implemented as hardware by synthesizing it on the Ultra96-V2 FPGA board using Vivado, and the accuracy and operation of the design are verified through Integrated Logic Analyzer(ILA). As a result of the experiment, it is confirmed that the designed RISC-V core performs the expected operation, and these results can contribute to the design and verification of RISC-V based systems.

Teaching Architectural Design in Post-War America - Gyorgy Kepes' Basic Course at MIT's Department of Architecture - (20세기 후반 MIT의 건축설계 교육과 기요르기 케피쉬의 기초디자인 프로그램의 특성과 변화에 관한 연구)

  • Pai, Hyung-Min
    • Journal of architectural history
    • /
    • v.15 no.2
    • /
    • pp.39-54
    • /
    • 2006
  • Focusing on the emergence of the basic course in American schools of architecture, in particular Gyorgy Kepes' courses at MIT, this paper studies the transformation of architectural pedagogy during the years after World War II. Kepes centered his architectural pedagogy on the picture plane, which was to function as the primary media for applying the principles of Gestalt psychology, that is the identification of the whole and its parts and the reciprocity between the internal human organism and the outside world. Kepes hence introduced a set of unconventional visual practices that were not readily assimilated to architectural conventions. Paralleling the establishment of the basic course, MIT also formulated a functionalist and spatial pedagogy with its two initial design studios, courses 4.721 and 4.722. These studios shared the notion that architectural design evolved from the inside toward the outside, an idea that took hold not just in the pragmatic environment of MIT's studios but also in conservative academic programs as well as in popular magazines, picture books, and exhibitions for the consumer public. The architectural surface became inseparable from the objects of art, furniture, and design, all of which were to be the generators of space. Hence, during the 1950s, the architectural surface provided a specific locus of intersection between the visual fundamentals of the basic course and the working principles of architectural design. Kepes, however, had by this time become disillusioned with architecture's potential as the medium of unity. Though he maintained the Gestalt logic of identity, he expanded it toward the goal of grander synthesis of society and consciousness freeing himself from the constraints of disciplinary instruction. In the case of Kepes, the mediating role of the picture plane was foregone in a regressive turn toward a primal, innocent, and direct experience.

  • PDF

A Study on the Instruction Set Architecture of Multimedia Extension Processor (멀티미디어 확장 프로세서의 명령어 집합 구조에 관한 연구)

  • O, Myeong-Hun;Lee, Dong-Ik;Park, Seong-Mo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.420-435
    • /
    • 2001
  • As multimedia technology has rapidly grown recently, many researches to process multimedia data efficiently using general-purpose processors have been studied. In this paper, we proposed multimedia instructions which can process multimedia data effectively, and suggested a processor architecture for those instructions. The processor was described with Verilog-HDL in the behavioral level and simulated with CADENCE$^{TM}$ tool. Proposed multimedia instructions are total 48 instructions which can be classified into 7 groups. Multimedia data have 64-bit format and are processed as parallel subwords of 8-bit 8 bytes, 16-bit 4 half words or 32-bit 2 words. Modeled processor is developed based on the Integer Unit of SPARC V.9. It has five-stage pipeline RISC architecture with Harvard principle.e.

  • PDF