• Title/Summary/Keyword: instantaneous voltage drop

Search Result 25, Processing Time 0.021 seconds

Design and Analysis of Instantaneous Voltage Drop Compensator (순간전압강하 보상기의 설계와 해석)

  • Lee, Taeck-Kie;Hyun, Dong-Seok;Hwang, Yong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.478-481
    • /
    • 1991
  • This paper discusses the principle and structure of instantaneous voltage drop compensator, which protects damage from instantaneous voltage drop in systems such as computer, variable speed drive, high voltage discharge-lamp, magnet switch. When instantaneous voltage drop occurs, control circuits detect it, then produce output voltage the same as normal condition voltage. Instantaneous voltage drop compensator has condenser bank as energy storage component, so system can be made small, light weight compared with UPS. In normal state, utility source transfers power, and in instantaneous voltage drop state, the energy of condenser bank transfers power through inverter, so high efficiency, compact, and especially low cost system can be manufactured.

  • PDF

A Study on the Design of the Dynamic Voltage Restorer Prototype (Dynamic Voltage Restorer Prototype 설계에 관한 연구)

  • Kim, Ji-Won;Chun, Yeong-Han;Jeon, Jin-Hong;Oh, Tae-Kyoo;Park, Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.140-145
    • /
    • 2001
  • The instantaneous voltage drop is occurred when the fault is happened on the nearby feeders. The instantaneous voltage drop is continued during relatively short period. But, the effect of it can be very severe to some sensitive devices. That is, it can be the reason of restart or malfunction of some devices. And these phenomenons can cause the enormous economical damage and shorten the lifetime of the devices. In this paper, the device which can compensate the instantaneous voltage drop, is studied. Through the computer simulation using PSCAD/EMTDC, the validity of the control algorithm using peak detection method is verified. And the Dynamic Voltage Restorer(DVR) prototype is designed and constructed. Through the experiment, the function and performance of the DVR prototype is verified.

  • PDF

A Study on the Instantaneous Voltage Drop Compensator through the Series Voltage Injection (직렬 전압주입에 의한 순간전압강하 보상기기에 관한 연구)

  • 전영환;김지원;전진홍
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.310-317
    • /
    • 2001
  • The instantaneous voltage drop is occurred when the fault is happened on the nearby feeders. The instantaneous voltage drop is continued during relatively short period. But, the effect of it can be very severe to some sensitive devices. That is, it can be the reason of restart or malfunction of some devices. And these phenomenons can cause the enormous economical damage and shorten the lifetime of the devices. In this paper the device which can compensate the instantaneous voltage drop, is studied. The device injects the voltage to the power system through the series transformer. The validity of the proposed algorithm using peak detection method is verified through the computer simulation and experiments.

  • PDF

A Study on Instantaneous Voltage Compensation of UPS using on Ultracapacitor (울트라커패시터를 이용한 UPS의 순시전압보상에 관한 연구)

  • Kim, Choon-Sam;Kim, Ji-Heon;Kim, Soo-Hong;Sung, Won-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposed UPS system parallel connected in battery and ultracapacitor to compensate instantaneous voltage drop. Ultracapacitor parallel connected with battery compensate instantaneous voltage drop at failure and it's reduced the voltage regulation of output voltage. We are produced for fast instantaneous voltage drop compensation of ultracapacitor at UPS system and experiments are achieved. Experimental result was verified that the ultracapacitor indicated the fast compensation characteristics and regulation of the output voltage satisfied within 5[%] by using ultracapacitor.

Electrical Characteristics due to Inner Defect of Insulating Materials for Power Cable. (전력케이블 절연재료의 내부결함에 따른 전기적 특성)

  • Choi, Sang-Gi;Kim, Tag-Yong;Kim, Wang-Kon;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.27-30
    • /
    • 2003
  • Recently, on power system, it is used to high voltage of transmission and distribution due to safe power supply and have high quality and insulation in order to satisfy excellent insulator. Thus, according to underground of high voltage cable, is occurred break down by ground short. Therefore, it is used to high quality XLPE power cable to interrupt instantaneous voltage drop. If it appear inner defect for cable whose have high quality and insulation, it is reduced rapidly due to concentration of electrical field. After assemble to manufacture, in order to inspect cable condition, it is decided much inspection standard. In this paper, In inner defect of assembling cable at manufacture, for measure the variation of insulation condition by void. it tested the variation of insulating characteristics, using $\phi$-q-n distribution variation in partial discharge experiment.

  • PDF

Development of Parallel Arc Fault Detector Using Ripple Voltage (리플전압을 이용한 병렬아크 사고 감지기 개발)

  • Choi, Jung-Kyu;Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.453-456
    • /
    • 2016
  • The major causes of electrical fire in low-voltage distribution lines are classified into short-circuit fault, overload fault, electric leakage, and electric contact failure. The special principal factor of the fire is electric arc or spark accompanied with such electric faults. This paper studies the development of an electric fire prevention system with detection and alarm of that in case of parallel arc fault occurrence in low-voltage distribution lines. The proposed system is designed on algorithm sensing the instantaneous voltage drop of line voltage at arc fault occurrence. The proposed detector has characteristics of high-speed operation responsibility and superior system reliability from composition using a large number of semiconductor devices. A new sensing control method that shows the detection of parallel arc fault is sensed to ripple voltage drop through a diode bridge full-wave rectifier at electrical accident occurrence. Some experimental tests of the proposed system also confirm the practicality and validity of the analytical results.

Development of Uninterruptible Power Supply with Voltage Sag Restorer Function (순시전압강하 보상 기능을 가지는 무정전전원공급장치의 개발)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • In this paper, UPS, with a built-in instantaneous sag drop compensation features, was developed to improve performance. The improved UPS, using instantaneous moving average method, compensates by quickly measuring the voltage and series inverter of half-bridge type, using line-interactive method that links with the voltage of the battery and power source, was developed. In addition, by developing a parallel inverter that uses a high-efficiency PWM switching method, overall UPS system was enhanced. To verify the performance of the proposed algorithm, single-phase 5[kVA] UPS systems were designed and the experimental system was constructed. The low-cost type of Cortex-M3 module CPU STM32F103R8T6 (32[bit]) is attached and the switching time of mode transfer was set within 4 [ms]. THD of the linear load operates in less than 3[%], and the stability of the output voltage operates in approximately ${\pm}2[%]$ range. The superior performance of the operations was confirmed with the system set as above.

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

Vehicle Voltage Stabilizing Module Using Supercapacitors (슈퍼캐패시터를 이용한 자동차 전압 안정화 모듈)

  • Park, Sukhee;Jeong, Kyuwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2015
  • The performance of a passenger vehicle has been greatly improved recently owing to the intensive use of electronic controllers. Many components of a vehicle, including the engine, are controlled by electronic systems installed in the vehicle. Therefore, the electrical power required for such electronics has increased significantly. However, the electrical power generated by the vehicle's alternator, operated by the engine, is limited, and when the vehicle is started, a large instantaneous current is required. The voltage of the vehicle electrical system fluctuates to a very low level, then, it is gradually recovered. This case is very severe and can even cause damage to electronic systems. In this study, a voltage-stabilizing module comprising electric double layer supercapacitors, which could alleviate the voltage variation, was developed and tested.