• Title/Summary/Keyword: instantaneous power compensation theory

Search Result 33, Processing Time 0.022 seconds

Instantaneous Power Compensation Theory in Three-phase Four-wire Systems (3상 4선 계통에서의 순시전력 보상이론)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.172-183
    • /
    • 2006
  • This paper analyzes instantaneous power compensation theory through comparing p-q theory and cross-vector theory which were proposed by Akagi and Nabae respectively in three-phase four-wire systems. The two compensation theories are identical when there is no zero-sequence voltage component in three-phase three-wire systems, However, when the zero-sequence voltage and/or current components exist in three-phase four-wire systems, the two compensation theories we different in definition on instantaneous real power and instantaneous imaginary power. Based on the analysis, this paper presents instantaneous power compensation method that can eliminate neutral current completely without using energy storage element when the zero-sequence current and voltage components exist in three-phase four-wire systems.

Instantaneous Reactive Power Compensation Theory Increasing The Control Freedom One Degree Higher (제어 자유도를 한 차원 증가시킨 순시무효전력 보상이론)

  • Kim, Hyo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2481-2483
    • /
    • 1999
  • This paper proposed the p-q-r coordinate system where the instantaneous active power p, and the two instantaneous reactive powers $q_{q}$, $q_{r}$ were defined. The three power components are linearly independent, so the compensation for the two instantaneous reactive powers leads to control the two components of the current space vector. With the theory, the neutral current of a three-phase four-wire system can be eliminated by only compensating the instantaneous reactive power using no energy storage element.

  • PDF

A Design and Simulation of Hybrid Power Filter for ASD Loads Based on Instantaneous Power Compensation Theory (가변 속도 드라이버 부하에 대한 순시 전력 보상을 이용한 복합형 전력 필터의 설계와 시뮬레이션)

  • 조진호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.385-390
    • /
    • 2000
  • This paper deals with the design and simulation of the hybrid power filter to compensate reactive power and harmonic components of nonlinear load. Control target is a 3-phase diode full bridge rectifier with L-R-C nonlinear load, this load is assumed adjustable speed driver(ASD). The hybrid filter consists of a shunt active filter, shunt passive filters and series inductors. Control algorithm is based on instantaneous power compensation theory proposed by H.Akagi and etc. The result from simulation shows the hybrid filter is superior than other filters on the point of compensation performance and low cost. The PSCAD/EMTDC 3.0 is used as simulation tools.

  • PDF

Determining the Compensation Voltages for Dynamic Voltage Restorers by use of PQR Instantaneous Power Theory (PQR 순시전력이론에 의한 동적전압보상기의 보상전압 결정)

  • 김효성;이상준;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 2003
  • This paper discusses how to generate the reference compensation voltages in Dynamic Voltage Restorers (DVR) by use of PQR instantaneous power theory. Sensed three-phase terminal voltages are transformed to PQR coordinates without time delay. Since the reference voltage in PQR coordinates is a single dc value, the voltage controller for DVRs is simple and easy to design. Proposed control method can be implemented by feedforward controllers or by feedback controllers. This paper verified the theory by a feedforward controller of a DVR with simulation and experiment.

Eliminating the Neutral Current by the Instantaneous Reactive Power Compensation (순시무효전력 보상에 의한 중성선 전류의 제거)

  • Kim, Hyo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • This paper, proposed the p-q-r coordinate system where the instantaneous active power p, and the two instantaneous reactive powers $q_{q}$, $q_{r}$ were defined. The three power components are linearly independent, so the compensation for the two instantaneous reactive powers leads to control the two components of the current space vector. With the theory, the neutral current of the three-phase four-wire system can be eliminated by only compensating the instantaneous reactive power using no energy storage element.

  • PDF

A New Scheme for Compensation of Unwanted Components of Instantaneous Load Power

  • Wong, Man-Chung;Han, Ying-Duo;Leong, Heng-San;Sio, Hon-Pan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.888-893
    • /
    • 1998
  • In practice, not only the load current but also the load voltage may contain asymmetric and harmonic components. Instantaneous power using p-q theory is analyzed to have compensation of reactive power, harmonics and asymmetry at the same time. In this paper, the limitation of p-q theory by using only shunt or series active filter is analyzed. A new scheme is proposed to solve the above issues.

  • PDF

A DSP Based Active Power Filter with Instantaneous Correlation Power Theory (상관함수에 의한 순시전력이론을 이용한 DSP 능동전력필터)

  • 정영국;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.50-56
    • /
    • 1999
  • This paper presents consideration on validity of instantaneous correlation power theory. The proposed power theory is defined and analyzed by time domain approach, thus it is easy to understand and instrument. The power is decomposed into active, fundamental reactive and harmonics components based on the autocorrelation and crosscorrelation signal techniques between voltage and current waveforms. On the compensation property, active power filter deal with three components only. Also, for real time control of active power filter, the power models with difficult concept are not cost effective. To verify the validity of the instantaneous correlation power theory, experimental work for voltage type DSP based active power filter is achieved. The power of thyristor controlled motor drives is decomposed into three orthogonal components by proposed power theory. From compensation results, validity of proposed theory is confirmed. feedback controller needs the information on some motor parameters. New recursive adaptation algorithms for rotor resistance and mutual inductance which can be applied to our nonlinear feedback controller are also presented in this paper. The recursive adaptation algorithms make the estimated values of rotor resistance and mutual inductance track their real values. Some simulation and experimental results show that the adaptation algorithms are robust against the variation of stator resistance and stator inductance.

Eliminating the Neutral Current by the Power Compensator without using Energy Storage Elements (에너지저장요소를 사용하지 않는 전력보상기에 의한 중성선 전류의 제거)

  • Kim, Hyo-Seong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.330-335
    • /
    • 1999
  • This paper proposed the p-q-r coordinate system where the instantaneous active power p, and the two instantaneous reactive powers qq, qr were defined. The three power components are linearly independent, so the compensation for the two instantaneous reactive powers leads to control the two components of the current space vector. With the theory, the neutral current of a three-phase four-wire system can be eliminated by only compensating the instantaneous reactive power using no energy storge element.

  • PDF

A Simple Instantaneous Power Theory and Modified Compensation Performance Evaluation of Active Power Filters (능동전력필터의 간단한 순시전력이론과 수정된 보상성능 평가법)

  • Jung, Y.G.;Yoo, K.H.;Kim, Y.C.;Yang, S.H.;Kim, W.Y.;Lim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2549-2552
    • /
    • 1999
  • The fictitious power theory in time domain is very easy to understand, but power analyzing time of active power is increased, because power is analyzed using signal techniques based on the correlation between voltage and current waveforms. Also, conventional methods in time/frequency domain to evaluate the compensation performance of active power filters are not provided easy solutions. So, the authors have previously proposed 3-D current coordinates which is composed into active component, fundamental reactive component and distorted component of nonlinear loads current. This method has excellent performance, but can not evaluate the characteristics of nonlinear load current whether inductive or capacitive. Therefore, To overcome problems mentioned previously, this paper deals with the simple instantaneous power theory and the modified 3-D current coordinates for evaluating the compensation performance of active power filters. To confirm the validity, active power filters simulator is developed using C-language. From the simulation, results are discussed their utility.

  • PDF

The Generalized Instantaneous Power Theory Using Mapping Matrices (맵핑 매트릭스를 사용한 일반화 순시전력 이론)

  • Kim, Hyo-Sung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1930-1932
    • /
    • 1997
  • Instantaneous active/reactive powers are defined in three phase four wire systems. The definition can be generally applicable to any source conditions and load conditions including nonlinear circuits. The zero-sequence power resulted from the zero-sequence voltage and zero-sequence current between two sub-systems affects both to the instantaneous active and reactive powers. The zero-sequence current can be controlled by compensation of the reactive power without power storage elements.

  • PDF