• Title/Summary/Keyword: instantaneous invariants

Search Result 2, Processing Time 0.015 seconds

CARDAN POSITIONS IN THE LORENTZIAN PLANE

  • Eren, Kemal;Ersoy, Soley
    • Honam Mathematical Journal
    • /
    • v.40 no.1
    • /
    • pp.187-198
    • /
    • 2018
  • In this paper, we study the instantaneous geometric properties of motion of rigid bodies in the Lorentzian plane. For this purpose we define Lorentzian form of Bottemas instantaneous invariants. In these regards, we obtain the necessary and sufficient condition of a Lorentzian plane to be at Cardan position with respect to these invariants.

Equivalent Friction Angle and Cohesion of the Generalized Hoek-Brown Failure Criterion in terms of Stress Invariants (응력불변량으로 표현한 일반화된 Hoek-Brown 파괴조건식의 등가 마찰각 및 점착력)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.462-470
    • /
    • 2012
  • Implementing the generalized Hoek-Brown failure criterion in the framework of the Mohr-Coulomb criterion requires the calculation of the equivalent friction angle and cohesion. In the conventional method based on the Balmer (1952)'s theory, the tangential instantaneous friction angle and cohesion are expressed in terms of the minimum principal stress ${\sigma}_3$, which does not provide the information about the dependency of the equivalent parameters on the hydrostatic pressure and the stress path. In this study, this defect of the conventional method has been overcome by representing the equivalent parameters in terms of stress invariants. Through the example implementation of the new method, the influence of the magnitude of the hydrostatic pressure and the Lode angle on the tangential instantaneous friction angle and cohesion is investigated. It turns out that the tangential instantaneous friction angle is maximum when the stress condition is triaxial extension, while the tangential cohesion is maximum when the stress condition is triaxial compression. The dependency of the equivalent Mohr-Coulomb strength parameters on the hydrostatic pressure and the Lode angle tends to be more substantial for the favorable rockmass of larger GSI value.