• Title/Summary/Keyword: instantaneous frequency (IF)

Search Result 29, Processing Time 0.023 seconds

Motor Fault Monitoring using Instantaneous Frequency (순간주파수를 이용한 모터고장진단)

  • Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae;Kho, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2519-2521
    • /
    • 2005
  • Instantaneous frequency(IF) has important physical meaning for nonstationary signal. Motor current is well known that to be a nonstationary signal whose properties vary with respect to the time-varying normal operating conditions of the motor, particularly with load. Time-frequency methods can overcome the shortcomings of the traditional spectral analysis techniques, nonstationary signal analysis approaches have been introduced. We examine the concept of IF as a potential candidate for condition monitoring of motors.

  • PDF

Demodulation and Performance of Multicomponent Undersampled AM, FM and AM-FM Signals (다중 성분의 저표본화된 AM, FM 및 AM-FM 신호들의 복조와 성능)

  • Son, Tae-Ho;Hwang, Ui-Cheon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.399-406
    • /
    • 2000
  • We propose an nonlinear demodulation algorithm for undersampled multicomponent AM(Amplitude Modulation), FM(Frequency Modulation) and AM-FM signals. First, we derive respectively undersampling frequency of the AM, FM and AM-FM using undersampling scheme, and separate respectively monocomponent signals from multicomponent signals using periodic algebraic separation algorithm. In this case augmented separation matrix is very regular and sparse, it has a special structure. The proposed demodulation algorithm detects respectively message signals of the IA(Instantaneous Amplitude) and IF(Instantaneous Frequency) from descrete monocomponent AM, FM and AM-FM signals with an undersampling frequency to be controllable. Verifying the RMS(Root Mean Squares) errors of the detected signals, we show that the performance is excellent.

  • PDF

Instantaneous frequency extraction in time-varying structures using a maximum gradient method

  • Liu, Jing-liang;Wei, Xiaojun;Qiu, Ren-Hui;Zheng, Jin-Yang;Zhu, Yan-Jie;Laory, Irwanda
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.359-368
    • /
    • 2018
  • A method is proposed for the identification of instantaneous frequencies (IFs) in time-varying structures. The proposed method combines a maximum gradient algorithm and a smoothing operation. The maximum gradient algorithm is designed to extract the wavelet ridges of response signals. The smoothing operation, based on a polynomial curve fitting algorithm and a threshold method, is employed to reduce the effects of random noises. To verify the effectiveness and accuracy of the proposed method, a numerical example of a signal with two frequency modulated components is investigated and an experimental test on a steel cable with time-varying tensions is also conducted. The results demonstrate that the proposed method can extract IFs from the noisy multi-component signals and practical response signals successfully. In addition, the proposed method can provide a better IF identification results than the standard synchrosqueezing wavelet transform.

S-Domain Equivalent System for Electromagnetic Transient Studies PART I : Frequency Dependent Network Equivalent (전자기 과도현상 해석을 위한 S 영역 등가시스템 PART I : 주파수 의존 시스템 등가)

  • 왕용필
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.11
    • /
    • pp.632-638
    • /
    • 2003
  • Modern power systems are very complex and to model them completely is impractical for electromagnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of frequency dependent equivalent. The s-domain rational function form of frequency dependent equivalent does not need refitting if the simulation time-step is changed in the electromagnetic transient program. This is because the s-domain rational function coefficients are independent of the simulation time-step, unlike the z-domain rational function coefficients. S-domain rational function fitting techniques for representing frequency dependent equivalents have been developed using Least Squares Fitting(LSF). However it does not suffer the implementation error that exited in this work as it ignored the instantaneous term. This paper Presents the formulation for developing 1 Port Frequency Dependent Network Equivalent(FDNE) with the instantaneous term in S-domain and illustrates its use. This 1 port FDNE have been applied to the CIGRE Benchmark Rectifier test AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 1 port (FDNE) developed with Thevenin and Norton Equivalent network. The study results have indicated the robustness and accuracy of 1 port FDNE for electromagnetic transient studies.

Korea Offshore Seismic Data Processing for Gas Detection (천연 가스 탐지를 위한 국내 대륙붕 탄성파자료 처리)

  • Jang, Seong-Hyung;Sunwoo, Don;Yang, Dong-Woo;Suh, Sang-Young;Chung, Bu-Heung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.115-123
    • /
    • 2001
  • The bright spot is an indicator for natural gas on seismic stack sections, but it is also shown on layers where the acoustic impedance contrast is large. In order to distinguish sharply between gas and impedance contrast we need additional detailed data processing such as velocity analysis, AVO analysis and seismic complex analysis including measures of seismic amplitude, frequency, and phase. In this study, we performed detailed velocity analysis, complex analysis and DHI (Direct Hydrocarbon Indicator) analysis which is the result of amplitude variation according to the incident angles. The seismic complex analysis gives us the geological information which depends on geophysical properties at the interest layer. For the complex analysis, we computed several seismic attributes such as the instantaneous amplitude, the first and the second derivatives of the instantaneous amplitude, the instantaneous phase, the instantaneous frequency and weighted average instantaneous frequency. Then we applied these analysis techniques to a seismic data of Korea offshore which had been logged. From the result of this data analysis, it could be said that high possibility area for gas layer detection has amplitude anomalies in the instantaneous amplitude, the instantaneous frequency and the DHI section resulting from the AVO analysis. If there are not any other anomalies in detailed data processing, it will have low possibility for gas layer detection.

  • PDF

Implementation of Self-frequency Synchronizing Circuit using Single-sideband Up-converter and Image Rejection Mixer (단측파대 상향변환기와 이미지제거 혼합기를 이용한 자기동조회로의 구현)

  • Yeom, Seong-Hyeon;Kim, Tae-Young;Kim, Tae-Hyun;Park, Boem-June
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1058-1063
    • /
    • 2010
  • In this paper, we designed self-frequency synchronizing circuit using image rejection mixer(IRM) and single-sideband(SSB) up-converter which can effectively eliminate the image frequencies occurred in multi-channel super-heterodyne receivers and help us to match inter-channel phase. Also the self-frequency synchronizing circuit simplifies system because there need no extra devices for making intermediate frequency(IF) by creating the local signal within several nanoseconds by means of generating the same frequency of IF signal and modulating radio frequency(RF) signal. We adopt the limiting amplifier for the purpose of protecting the circuit from spurious signals which come from the front end side having wide instantaneous bandwidth characteristics and constantly injecting same level into the input local signal of IRM. The IRM we fabricated has image rejection ratio of 27dB, which is good over 7dB for foreign company's. Also, the SSB up-converter we fabricated has 1dB compression point of 18dBm, which is good over 16dB for foreign company's. And the size is compact about one-forth.

Integrated approach using well data and seismic attributes for reservoir characterization

  • Kim Ji- Yeong;Lim Jong-Se;Shin Sung-Ryul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.723-730
    • /
    • 2003
  • In general, well log and core data have been utilized for reservoir characterization. These well data can provide valuable information on reservoir properties with high vertical resolution at well locations. While the seismic surveys cover large areas of field but give only indirect features about reservoir properties. Therefore it is possible to estimate the reservoir properties guided by seismic data on entire area if a relationship of seismic data and well data can be defined. Seismic attributes calculated from seismic surveys contain the particular reservoir features, so that they should be extracted and used properly according to the purpose of study. The method to select the suitable seismic attributes among enormous ones is needed. The stepwise regression and fuzzy curve analysis based on fuzzy logics are used for selecting the best attributes. The relationship can be utilized to estimate reservoir properties derived from seismic attributes. This methodology is applied to a synthetic seismogram and a sonic log acquired from velocity model. Seismic attributes calculated from the seismic data are reflection strength, instantaneous phase, instantaneous frequency and pseudo sonic logging data as well as seismic trace. The fuzzy curve analysis is used for choosing the best seismic attributes compared to sonic log as well data, so that seismic trace, reflection strength, instantaneous frequency, and pseudo sonic logging data are selected. The relationship between the seismic attribute and well data is found out by the statistical regression method and estimates the reliable well data at a specific field location derived from only seismic attributes. For a future work in this study, the methodology should be checked an applicability of the real fields with more complex and various reservoir features.

  • PDF

Performance Improvement on the Combined Convolutional Coding and Binary CPFSK Modulation (Convolutional Code/Binary CPFSK 복합 전송시스템의 성능개선에 관한 연구)

  • Choi, Yang Ho;Baek, Je In;Kim, Jae Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.591-596
    • /
    • 1986
  • A binary continuous phase frequency shift keying (CPFSK), whose phase is a continuous function of time and instantaneous frequency is constant, is a bandwidth efficient constant envelope signalling scheme. A transmitting signal is formed by combined coding of a convolutional encoder and a binary CPFSK modulator. The signal is transmitted throuth additive white Gaussian noise(AWGN) channel. If the received signal is detected by a coherent maximum likelihood(ML) receiver, error probability can be expressed approximately in terms of minimum Euclidean distance. We propose rate 2/4 codes for the improvement of error performance without increating the data rate per bandwidth and the receiver complexity. Its minimum Euclidean distances are compared with those of rate \ulcornercodes as a function of modulation index and observation interval.

  • PDF

The Influence on Traction Return Current by Pantograph Detachment Frequency of High-speed Train (고속철도차량의 이선빈도가 귀선전류에 미치는 영향)

  • Lee, Sung-Gyen;Cho, Young-Maan;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.8-13
    • /
    • 2014
  • Currently it is major problem of electric railway with increasing drive speed such as the arc generated by the pantograph detachment and the distortion current in the motor-block high speed switching. When physical contact between the pantograph and the catenary line is separated, the pantograph detachment arcing occurs and it makes up the conductive noise to the return feeder. We made the EMTP modeling of the railway traction system and the pantograph arc by circuit elements and switches. The influence of pantograph detachment frequency is investigated by changing some frequencies. The over-current occurs in each detachment and it oscillates some time at beginning and stabilizes gradually. The magnitude of over-current is decided by instantaneous value of existing traction return current. If the detachment occurs at a point of peak value or distortion current, the over-current will be more harmful to the power systems connected with the return feeder and will become to arise with increasing detachment frequency.

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.