• Title/Summary/Keyword: instantaneous frequency

Search Result 337, Processing Time 0.027 seconds

Digital Demodulator Design and Characteristics Using Algebraic Separation and Energy Operator from Undersampled Two-Component AM-FM Signals (저표본화된 주성분의 AM-FM 신호들로부터 대수적 분리와 에너지 연산자를 사용한 복조기 설계 및 특성)

  • Sohn, Tae-Ho;Lee, Min-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.643-649
    • /
    • 1999
  • In this paper, we proposed that i) noise-tolerant four kinds of AM(Amplitude Modulation)-FM(Frequency Modulation) demodulators are designed, ⅱ) we derived undersampling frequency through the product via energy operator of the monocomponent AM-FM signals separated form two-component AM-FM signals, and ⅲ) these four kinds of AM-FM demodulators detect respectively information signals of the IA(Instantaneous Amplitude) and IF(Instantaneous Frequency) by undersampling frequency to be different each other from the undersampled monocomponet AM-FM signals. Particularly, the proposed algorithm can control undersampling frequency by an integer factor. And these efficient AM-FM demodulators are well worked with the undersampled AM-FM signals.

  • PDF

Korea Offshore Seismic Data Processing for Gas Detection (천연 가스 탐지를 위한 국내 대륙붕 탄성파자료 처리)

  • Jang, Seong-Hyung;Sunwoo, Don;Yang, Dong-Woo;Suh, Sang-Young;Chung, Bu-Heung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.115-123
    • /
    • 2001
  • The bright spot is an indicator for natural gas on seismic stack sections, but it is also shown on layers where the acoustic impedance contrast is large. In order to distinguish sharply between gas and impedance contrast we need additional detailed data processing such as velocity analysis, AVO analysis and seismic complex analysis including measures of seismic amplitude, frequency, and phase. In this study, we performed detailed velocity analysis, complex analysis and DHI (Direct Hydrocarbon Indicator) analysis which is the result of amplitude variation according to the incident angles. The seismic complex analysis gives us the geological information which depends on geophysical properties at the interest layer. For the complex analysis, we computed several seismic attributes such as the instantaneous amplitude, the first and the second derivatives of the instantaneous amplitude, the instantaneous phase, the instantaneous frequency and weighted average instantaneous frequency. Then we applied these analysis techniques to a seismic data of Korea offshore which had been logged. From the result of this data analysis, it could be said that high possibility area for gas layer detection has amplitude anomalies in the instantaneous amplitude, the instantaneous frequency and the DHI section resulting from the AVO analysis. If there are not any other anomalies in detailed data processing, it will have low possibility for gas layer detection.

  • PDF

Automatic Identification of Digital Modulation Methode Using an Artification Neural Network (신경망을 이용한 디지털 변조방식의 자동식별)

  • 신용조
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1769-1776
    • /
    • 2000
  • In this paper a new method is proposed to identify a modulation method in the case of unknown digitally modulated input signals. The proposed identification method is implemented with an artificial neural network which is based on characteristic feature extracted from the instantaneous amplitude the instantaneous phase and the instantaneous frequency of the input signals. The proposed method was simulated with 9 type signals (ASK2, FSK2, FSK4, PSK2, PSK4, PSK8, QAM8, QAM16) in a noisy communication environment. The results show that the artificial neural network can accurately recognize all kinds of patterns.

  • PDF

Improved Melody Recognition Performance of a Cochlear Implant Speech Processing Strategy Using Instantaneous Frequency Encoding Based on Teager Energy Operator

  • Choi, Sung-Jin;Ryu, Sang-Baek;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.417-426
    • /
    • 2010
  • We present a speech processing strategy incorporating instantaneous frequency (IF) encoding for the enhancement of melody recognition performance of cochlear implants. For the IF extraction from incoming sound, we propose the use of a Teager energy operator (TEO), which is advantageous for its lower computational load. From time-frequency analysis, we verified that the TEO-based method provides proper IF encoding of input sound, which is crucial for melody recognition. Similar benefit could be obtained also from the use of a Hilbert transform (HT), but much higher computational cost was required. The melody recognition performance of the proposed speech processing strategy was compared with those of a conventional strategy using envelope extraction, and the HT-based IF encoding. Hearing tests on normal subjects were performed using acoustic simulation and a musical contour identification task. Insignificant difference in melody recognition performance was observed between the TEO-based and HT-based IF encodings, and both were superior to the conventional strategy. However, the TEO-based strategy was advantageous considering that it was approximately 35% faster than the HT-based strategy.

Design of Real-Time Autonomic Nervous System Evaluation System Using Heart Instantaneous Frequency

  • Noh, Yeon-Sik;Park, Sung-Jun;Park, Sung-Bin;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.576-583
    • /
    • 2008
  • In this study, we attempt to design a real-time autonomic nervous system(ANS) evaluation system usable during exercise using heart instantaneous frequency(HIF). Although heart rate variability(HRV) is considered to be a representative signal widely used ANS evaluation system, the R-peak detection process must be included to obtain an HRV signal, which involves a high sampling frequency and interpolation process. In particular, it cannot accurately evaluate the ANS using HRV signals during exercise because it is difficult to detect the R-peak of electrocardiogram(ECG) signals with exposure to many noises during exercise. Therefore, in this study, we develop the ground for a system that can analyze an ANS in real-time by using the HIF signal circumventing the problem of the HRV signal during exercise. First, we compare the HRV and HIF signals in order to prove that the HIF signal is more efficient for ANS analysis than HRV signals during exercise. Further, we performed real-time ANS analysis using HIF and confirmed that the exerciser's ANS variation experiences massive surges at points of acceleration and deceleration of the treadmill(similar to HRV).

Microwave Instantaneous Frequency Measurement (IFM) Approach Based on an Integrated Photonic Ti:LiNbO3 Y Branch

  • Zhang, Changsheng;Zhang, Jiahong;Zhao, Zhengang
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.361-367
    • /
    • 2020
  • An approach based on an integrated photonic Ti:LiNbO3 Y branch has been proposed, designed, and analyzed for the microwave instantaneous frequency measurement (IFM). By designing the Y branch with length L = 6545 ㎛ and refractive index NTE - NTM = 0.0764, a complementary optical filter with free spectral range (FSR) of 600 GHz is constituted, which results in a maximum measureable frequency of 300 GHz being obtained. Theoretical analysis on the temperature stability of the Ti:LiNbO3 Y branch shows that the FSR variation of the complementary filter is 0.3% for the temperature change of 100 K, which indicates that the IFM approach will have a better stability. All these results demonstrate that the proposed IFM approach has potential capability to be used for the increasingly higher microwave IFM with better stability.

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan;Zhou-Jie Zhao;Ya Liu;Zhong-Xiang Shen
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.201-215
    • /
    • 2024
  • Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

The Direction of Power Quality Analysis Technology (전기품질 진단기술의 방향)

  • Kang, Chang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.16-18
    • /
    • 2005
  • Becoming more and more diversified and complicated, power quality management has focused on the electricity-failure duration(including the numbers), the appropriate rate of voltage(average voltage during 30 minutes), the stability rate of frequency etc. as a basic goal value. And recently the focus is moving into the instantaneous minute interruption factors such as voltage & current harmonics, surge occurring frequency, instantaneous voltage variation, voltage unbalance, instantaneous electricity failure, flicker etc. by the development of electricity & electronics and communication equipments, which had not been so big problems before. This paper will address the flow of analysis technology and forecast the desirable direction of power quality analysis technology in the future.

  • PDF

Alternating Sunspot Area and Hilbert Transform Analysis

  • Kim, Bang-Yeop;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.261-265
    • /
    • 2011
  • We investigate the sunspot area data spanning from solar cycles 1 (March 1755) to 23 (December 2010) in time domain. For this purpose, we employ the Hilbert transform analysis method, which is used in the field of information theory. One of the most important advantages of this method is that it enables the simultaneous study of associations between the amplitude and the phase in various timescales. In this pilot study, we adopt the alternating sunspot area as a function of time, known as Bracewell transformation. We first calculate the instantaneous amplitude and the instantaneous phase. As a result, we confirm a ~22-year periodic behavior in the instantaneous amplitude. We also find that a behavior of the instantaneous amplitude with longer periodicities than the ~22-year periodicity can also be seen, though it is not as straightforward as the obvious ~22-year periodic behavior revealed by the method currently proposed. In addition to these, we note that the phase difference apparently correlates with the instantaneous amplitude. On the other hand, however, we cannot see any obvious association of the instantaneous frequency and the instantaneous amplitude. We conclude by briefly discussing the current status of development of an algorithm for the solar activity forecast based on the method presented, as this work is a part of that larger project.

Demodulation and Performance of Multicomponent Undersampled AM, FM and AM-FM Signals (다중 성분의 저표본화된 AM, FM 및 AM-FM 신호들의 복조와 성능)

  • Son, Tae-Ho;Hwang, Ui-Cheon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.399-406
    • /
    • 2000
  • We propose an nonlinear demodulation algorithm for undersampled multicomponent AM(Amplitude Modulation), FM(Frequency Modulation) and AM-FM signals. First, we derive respectively undersampling frequency of the AM, FM and AM-FM using undersampling scheme, and separate respectively monocomponent signals from multicomponent signals using periodic algebraic separation algorithm. In this case augmented separation matrix is very regular and sparse, it has a special structure. The proposed demodulation algorithm detects respectively message signals of the IA(Instantaneous Amplitude) and IF(Instantaneous Frequency) from descrete monocomponent AM, FM and AM-FM signals with an undersampling frequency to be controllable. Verifying the RMS(Root Mean Squares) errors of the detected signals, we show that the performance is excellent.

  • PDF