• Title/Summary/Keyword: instability of resistance

Search Result 114, Processing Time 0.027 seconds

Yaw wind effect on flutter instability of four typical bridge decks

  • Zhu, Le-Dong;Xu, You-Lin;Guo, Zhenshan;Chang, Guang-Zhao;Tan, Xiao
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.317-343
    • /
    • 2013
  • When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat ${\Pi}$-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between $-3^{\circ}$ and $3^{\circ}$, and the yaw wind angles corresponding to the minimal critical wind speeds are between $4^{\circ}$ and $15^{\circ}$. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.

A Study on the Unstable behavior According to rise-span ratio of dome type space frame (돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose

  • Jonghyeok Shin;Seungjoo Kim;Wonbeom Park;Kyoung Chan Jin;Sun-Ki Kim;Dae-Hyuk Kweon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1471-1478
    • /
    • 2022
  • 2'-Fucosyllactose (2'-FL), the most abundant fucosylated oligosaccharide in human milk, has multiple beneficial effects on human health. However, its biosynthesis by metabolically engineered Escherichia coli is often hampered owing to the insolubility and instability of α-1,2-fucosyltransferase (the rate-limiting enzyme). In this study, we aimed to enhance 2'-FL production by increasing the expression of soluble α-1,2-fucosyltransferase from Helicobacter pylori (FucT2). Because structural information regarding FucT2 has not been unveiled, we decided to improve the expression of soluble FucT2 in E. coli via directed evolution using a protein solubility biosensor that links protein solubility to antimicrobial resistance. For such a system to be viable, the activity of kanamycin resistance protein (KanR) should be dependent on FucT2 solubility. KanR was fused to the C-terminus of mutant libraries of FucT2, which were generated using a combination of error-prone PCR and DNA shuffling. Notably, one round of the directed evolution process, which consisted of mutant library generation and selection based on kanamycin resistance, resulted in a significant increase in the expression level of soluble FucT2. As a result, a batch fermentation with the ΔL M15 pBCGW strain, expressing the FucT2 mutant (F#1-5) isolated from the first round of the directed evolution process, resulted in the production of 0.31 g/l 2'-FL with a yield of 0.22 g 2'-FL/g lactose, showing 1.72- and 1.51-fold increase in the titer and yield, respectively, compared to those of the control strain. The simple and powerful method developed in this study could be applied to enhance the solubility of other unstable enzymes.

Influence of the Parasitic Inductor Resistance on Controller Design of Boost Converter for Renewable Energy System including an Energy Storage (에너지 저장장치를 포함하는 신재생에너지원용 부스트 컨버터의 인덕터 기생저항에 따른 제어기 설계 영향 분석)

  • Park, Sun-Jae;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.511-520
    • /
    • 2011
  • Nowadays, industry of smart grid is important for practical use of the renewable energy. In this situation, it is important to use the energy storage to make more stable and efficient renewable energy sources. The power conditioning systems consist in a boost converter which makes renewable energy source connected with the grid-connected inverter and the charger/discharger which takes the energy transfer between the boost converter and an energy storage. The effects on the controller design of each converter must be investigated to avoid the instability of the entire system. small-signal modelling of the boost converter and charger/discharger have been done and a controller design example is also presented. In this paper, effects on the controller design of the boost converter and the charger/discharger are investigated according to the existence of the parasitic resistance of the boost converter. In conclusion, the parasitic resistance of the inductor should be considered from the aspect of both the frequency domain analysis and time domain simulation using both MATLAB and PSIM.

Experimental determination of the resistance of a single-axis solar tracker to torsional galloping

  • Martinez-Garcia, Eva;Marigorta, Eduardo Blanco;Gayo, Jorge Parrondo;Navarro-Manso, Antonio
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.519-528
    • /
    • 2021
  • One of the most efficient designs of solar trackers for photovoltaic panels is the single-axis tracker, which holds the panels along a torque tube that is driven by a motor at the central section. These trackers have evolved to become extremely slender structures due to mechanical optimization against static load and the need of cost reduction in a very competitive market. Owing to the corresponding decrease in mechanical resistance, some of these trackers have suffered aeroelastic instability even at moderate wind speeds, leading to catastrophic failures. In the present work, an analytical and experimental approach has been developed to study that phenomenon. The analytical study has led to identify the dimensionless parameters that govern the motion of the panel-tracker structure. Also, systematic wind tunnel experiments have been carried out on a 3D aeroelastic scale model. The tests have been successful in reproducing the aeroelastic phenomena arising in real-scale cases and have allowed the identification and a close characterization of the phenomenon. The main results have been the determination of the critical velocity for torsional galloping as a function of tilt angle and a calculation methodology for the optimal sizing of solar tracker shafts.

Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression

  • Coelho, Ana M. Girao;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.385-414
    • /
    • 2010
  • In current European Standard EN 1993, the moment-rotation characteristics of beam-to-column joints made from steel with a yield stress > 460MPa are obtained from elastic design procedures. The strength of the joint basic components, such as the column web subject to local transverse compression, is thus limited to the yield resistance rather than the plastic resistance. With the recent developments of higher strength steel grades, the need for these restrictions should be revisited. However, as the strength of the steel is increased, the buckling characteristics become more significant and thus instability phenomena may govern the design. This paper summarizes a comprehensive set of finite element parametric studies pertaining to the strength behaviour of high-strength steel unstiffened I-columns in transverse compression. The paper outlines the implementation and validation of a three-dimensional finite element model and presents the relevant numerical test results. The finite element predictions are evaluated against the strength values anticipated by the EN 1993 for conventional steel columns and recommendations are made for revising the specifications.

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

A Study on the J-Resistance Characteristics and Material Tearing Modulus of SG365 steel (SG365강의 파괴저항특성과 찢어짐계수에 관한 연구)

  • 임만배;윤한기
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.75-80
    • /
    • 2001
  • The elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the material tearing modulus and characterizes the crack tip field under the plane stress and strain. SG-365 steel is observed that J-R curve and Tmat value decrease as 0%, 20%, 30%, and 40%. The 40% side grooved specimen is very useful in estimation of the $J_IC$. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides. it improves the accuracy of toughness values, decreases the scattering the them and tunneling and shear lip by the side groove. Applicability of tearing modulus($T_J$ proposed by paris et al as instability panameter for this material is investigated.

  • PDF

Study on Dynamics Modeling of Pogo Suppression Device (PSD) (포고억제장치(PSD) 동특성 모델링에 관한 연구)

  • Lee, Jun-Kyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.23-30
    • /
    • 2007
  • The effectiveness of a pogo suppression device (PSD) on the response of piping system simulating the propellant supply lines of the rocket engines was investigated experimentally by other researchers. In this study, the simplified analytical model was made, and the key parameters which are difficult to derive theoretically were identified in combination with the previous experimental work. In other words, the flow transient equations for a PSD system and the key parameters used to decide the instability of the system from the linearized transfer function including inertance, compliance, and resistance were derived. From the analysis, the values of key parameters could be determined from the experimental results.