• Title/Summary/Keyword: instabilities

Search Result 510, Processing Time 0.023 seconds

A Study on Screw Design Parameters of Co-Rotating Twin Screw Extruder (동회전 2축 스크류 압출기의 스크류 설계 파라미터에 관한 연구)

  • 최부희;최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.217-226
    • /
    • 2003
  • Twin screw extruders are the heart of the polymer processing industry. They are used at some stage in nearly all polymer processing operations. This paper is concerned with the basic elements of the extruder design. The proper design of the geometry of the extruder screw is of crucial importance to the proper functioning of the extruder. If the material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, a characteristic design on the screw flights shape of the closely intermeshing co-rotating twin screw extruder. This paper presents design parameters of double flighted screw and triple flighted screw elements, and characteristics of various screw channel area versus screw diameter ratio, K value, in the barrel of screw extruder.

The Theoretical Investigation of the Natural Frequency Coefficients for a Thin Rectangular Tube used in the Heat Exchanger (열교환기에 사용되는 얇은 사각 단면 튜브의 고유규진동계수에 대한 이론적 분석)

  • 김기만
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.373-383
    • /
    • 1995
  • From the viewpoint of the structural design, the principal problem of the heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive fluid loading may give rise to permanent deformation of tube and would enentually result in collapse of heat exchanger, which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analtically the vibration characteristics of thin rectangular tube used in the heat exchanger. The model consists of two flat plates separated by fluid. The effects of the fluid in the tube was stuided. For analyses, the natural frequency coefficients of the model were investigated for the plate aspect ratios, channel heights, and boundary conditions. As conclusions, the natural frequency coefficients of the tube is found to be affected largely by the fluid loading and the channel heights.

  • PDF

Chaotic Behavior of a Double Pendulum Subjected to Follower Force (종동력을 받는 이중진자의 혼돈운동 연구)

  • 장안배;이재영
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.439-447
    • /
    • 1997
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower forces are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant, the initial impact forces acting at the end of the model are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, power density spectrum, and Poincare maps. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, direction control constant, and viscous damping, etc., are analysed. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

On the Method for Hot-Fire Modeling of High-Frequency Combustion Instability in Liquid Rocket Engines

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Valery P. Pikalov
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1010-1018
    • /
    • 2004
  • This study presents the methodological aspects of combustion instability modeling and provides the numerical results of the model (sub-scale) combustion chamber, regarding geometrical dimensions and operating conditions, which are for determining the combustion stability boundaries using the model chamber. An approach to determine the stability limits and acoustic characteristics of injectors is described intensively. Procedures for extrapolation of the model operating parameters to the actual conditions are presented, which allow the hot-fire test data to be presented by parameters of the combustion chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for designers. Tests with the model chamber, based on the suggested scaling method, are far more cost-effective than with the actual (full-scale) chamber and useful for injector screening at the initial stage of the combustor development in a viewpoint of combustion instabilities.

Experimental Study on the Behaviors of Lean Premixed Flame of Propane/Air and Methane/Air in a Tube (관내 희박 예혼합 프로판/공기와 메탄/공기 화염의 거동에 관한 실험적 연구)

  • Guahk, Young-Tae;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.35-41
    • /
    • 2005
  • Behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated experimentally varying the mean velocity from 10 to 140 cm/s and the equivalence ratio from 0.45 to 0.8. Behaviors of both flames are divided into five regions of stable, flash-back, tail-out, flickering and vibrating. General characteristics of each region and Le number effect are investigated. Two main instabilities, flickering and vibration, are both unstable but the instability mechanism, the frequency and the amplitude of pressure fluctuation are different. In the edge of the vibrating region, pressure fluctuation repeats generation and extinction. Repeated growth and decrease of the amplitude of pressure fluctuation are explained by Rayleigh#s index.

  • PDF

Theoretical Study on Acoustic Instability in Liquid Rocket Engine (액체 로켓 엔진의 음향 불안정 예측에 관한 이론적 연구)

  • Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.92-100
    • /
    • 2000
  • One method to analyse acoustic modes is proposed to predict the characteristics of acoustic instability in liquid rocket engine. It is based on the similarity between transverse acoustic modes and adopts two-dimensional axisymmetric geometry. Using this method, the first tangential mode in the prototype combustor can be analysed through the analysis of the first radial mode in the model combustor with doubled chamber diameter. Sample numerical calculation is demonstrated applying this method to sample rocket engine and thereby acoustic instabilities of the engine are investigated. The present results show a good agreement with the previous findings. The numerical analysis based on the proposed method is cost-effective and serves as the first approximation to the true solution.

  • PDF

Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 맥동 불안정성의 비선형 거동)

  • Lee, Su Ryong;Park, Sung Cheon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.9-16
    • /
    • 2012
  • Nonlinear dynamics of pulsating instability in radiating counterflow diffusion flames is numerically investigated by imposing Damk$\ddot{o}$hler number perturbation. Stable limit-cycle solutions occur in small ranges of Damk$\ddot{o}$hler numbers past bifurcation point of instability. Period doubling cascade and chaotic behaviors appear just before dynamic extinction occurs. Nonlinear dynamics is also studied when large disturbances are imposed to flames. For weak steady flames, the dynamic extinction range shrinks as the magnitudes of disturbances are increased. However, strong steady flames can overcome relatively large disturbances, thereby the dynamic extinction range extending. Stable limit-cycle behaviors reappears prior to dynamic extinction when the steady flames are strong enough.

Linear Stability Analysis in a Gas Turbine Combustor Using Thermoacoustic Models (열음향 해석 모델을 통한 가스터빈 연소기에서의 선형 안정성 분석)

  • Kim, Daesik
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • In this study, thermoacoustic analysis model was developed in order to predict both eigenfrequencies and initial growth rate of combustion instabilities for lean premixed gas turbine combustors. As a first step, a model combustor and nozzle were selected and analytical linear equations for thermoacoustic waves were derived for a given combustion system. Then, methods showing how the equations can be used for analysis of the combustion instability were suggested. It was found that the prediction results showed a good agreement with the measurements. However, there were some limitation in growth rate predictions, which were related with over-simplification of flame structure, acoustic boundary conditions, and temperature distribution in the combustor.

Rough Fuzzy Control of SVC for Power System Stability Enhancement

  • Mishra, Yateendra;Mishra, Sukumar;Dong, Zhao Yang
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.337-345
    • /
    • 2008
  • This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Ji-Hyoung;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

  • PDF