Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.4
/
pp.414-419
/
2016
A study of a precision test according to the control method of an injection molding machine was carried out. The effects of the screw stroke, holding pressure, melt temperature on both the hydraulic and electric injection molding machine were examined. In addition, hypothesis testing was performed to determine the deviation of the data obtained in the experiments. The conclusions obtained in this study were as follows. Significant deviations in the screw stroke, melt temperature and holding pressure occurred in that order. The hydraulic type showed significantly more variation between the products compared to the electric type. In addition, using a mini tab from the statistics program, a hypothesis was proposed and the P value of the injection stroke, holding pressure, melting temperature injection stroke and melting temperature had adopted a null hypothesis ($H_0$). The holding pressure, which showed mutual differences, adopted an alternative hypothesis ($H_1$).
Journal of The Korean Association of Information Education
/
v.25
no.2
/
pp.327-335
/
2021
This study verified the effectiveness of machine learning education programs focused on data labeling as an educational method for improving computational thinking of elementary school students. The education program was designed and developed based on the results of a preliminary demand analysis conducted on 100 elementary school teachers. In order to verify the effectiveness of the developed education program, 17 sixth-grade students attending K Elementary School were given 2 classes per day for a total of 6 weeks. In order to measure the effect of the training on improving computational thinking, the educational effects were analyzed by conducting pre-post-inspection using the "Beaver Challenge". According to the analysis, machine learning education focused on data labeling contributed to improving computational thinking of elementary school students.
Kim, Hyo-Young;Kim, Tae-Gon;Lee, Seok-Woo;Yoon, Han-Sol;Kyung, Dae-Su;Choi, In-Hue;Choi, Hyun;Ko, Jong-Min
Journal of the Korean Society for Precision Engineering
/
v.33
no.6
/
pp.431-438
/
2016
Recently, concerns about the environment are becoming more important because of global warming and the exhaustion of earth's resources. In the aviation and automobile industries, the application of light materials is increasingly important for eco-friendly and effective. Carbon Fiber Reinforced Plastics is a composite material which great formability and the high strength of carbon fiber. CFRP, which is both light and strong, is hard to manufacture. In addition, CFRP machining has a high chance of defects. This research discusses the development of a manufacturing system package for CFRP machining. It involving CFRP Drilling/Water-jet Manufacturing Machines, Inspection/Post-processing Systems, CNC platform for an EtherCAT servo Communication, Flexible Manufacturing Systems and CFRP machining Processes.
Kim, Young-Choon;Kim, Young-Man;Kim, Sung-Gil;Kim, Hong-Bae;Cho, Moon-Taek
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.2
/
pp.202-208
/
2016
In this study, the defect in connection with a C-tray was inspected using a low-cost camera. The four test items were the device overlapping in the tray, the bending of the tray, the loaded quantity of the tray, and the device pocket leaving, an algorithm was developed for defining and detecting the above defect types. Therefore, the developed handling system could extend the application of the stack of the c-tray and provide a quantity verification inspection on the packing processing. The machine operation control program, which can ensure the optimal inspection image to match the scan speed, was developed and the control program that can process the user gui and the vision image utilizing the control was developed. Overall, a mechanical system that is practicable for obtaining an image and processing the vision data was designed.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.6
/
pp.703-710
/
2018
Although various efforts have been made every year to reduce electric fire accidents such as accident analysis and inspection for electric fire accidents, there is no effective countermeasure due to lack of effective decision support system and existing cumulative data utilization method. The purpose of this study is to develop an algorithm for predicting electric fire based on data such as electric safety inspection data, electric fire accident information, building information, and weather information. Through the pre-processing of collected data for each institution such as Korea Electrical Safety Corporation, Meteorological Administration, Ministry of Land, Infrastructure, and Transport, Fire Defense Headquarters, convergence, analysis, modeling, and verification process, we derive the factors influencing electric fire and develop prediction models. The results showed insulation resistance value, humidity, wind speed, building deterioration(aging), floor space ratio, building coverage ratio and building use. The accuracy of prediction model using random forest algorithm was 74.7%.
Kim, Joong-Seon;Kwon, Dae-Kyu;Lee, Se-Han;Wang, Duck-Hyun
Journal of the Korean Society of Manufacturing Process Engineers
/
v.21
no.3
/
pp.56-62
/
2022
The tank engine clutch flange constitutes a tank on which the engine and transmission of the tank are mounted. The engine clutch flange is fabricated using a difficult-to-cut material that exhibits high strength and hardness. It is difficult to process and requires considerable processing expertise. In addition, the engine clutch flange for the tank requires high machining precision because it is a system in which the connection is detachable. Because it requires high processing precision, the measurement of products equally important as processing. However, productivity is low owing to the significant amount of time required to measure each product using a three-dimensional coordinate measuring machine. Hence, this study is conducted to improve the productivity of the female tank engine clutch flange. Dedicated hobs and jigs are designed and manufactured to convert the existing end-mill cutting processing into hobbing cutting processing. An engine clutch for the tanks is manufactured using the manufactured dedicated hob and jig, and the shortening time is verified by measuring the processing time. In addition, a jig for inspection is designed and manufactured to measure the precision of the product. To verify the inspected product, the product precision is measured using a contact-type three-dimensional coordinate measuring machine and a surface roughness measuring instrument. The study confirmed that the productivity of the engine clutch flange product for tanks can be improved by simplifying the process, reducing the processing time, and simplifying product inspection.
Plant diseases and pests affect the growth of various plants, so it is very important to identify pests at an early stage. Although many machine learning (ML) models have already been used for the inspection and classification of plant pests, advances in deep learning (DL), a subset of machine learning, have led to many advances in this field of research. In this study, disease and pest inspection of abnormal crops and maturity classification were performed for normal crops using YOLOX detector and MobileNet classifier. Through this method, various plant pest features can be effectively extracted. For the experiment, image datasets of various resolutions related to strawberries, peppers, and tomatoes were prepared and used for plant pest classification. According to the experimental results, it was confirmed that the average test accuracy was 84% and the maturity classification accuracy was 83.91% in images with complex background conditions. This model was able to effectively detect 6 diseases of 3 plants and classify the maturity of each plant in natural conditions.
Journal of the Korea institute for structural maintenance and inspection
/
v.28
no.5
/
pp.20-29
/
2024
The chloride diffusion coefficient is a critical indicator for assessing the durability of concrete marine substructures. This study develops a prediction model for the chloride diffusion coefficient using data from concrete bridges located in marine exposure zones (atmospheric, splash, tidal), an aspect that has not been considered in previous studies. Chloride profile data obtained from these bridge substructures were utilized. After data preprocessing, machine learning models, including Random Forest (RF), Gradient Boosting Machine (GBM), and K-Nearest Neighbors (KNN), were optimized through hyperparameter tuning. The performance of these models was developed and compared under three different variable sets. The first model uses six variables: water-to-binder (W/B) ratio, cement type, coarse aggregate volume ratio, service life, strength, and exposure environment. The second model excludes the exposure environment, using only the remaining five variables. The third model relies on just three variables: service life, strength, and exposure environment factors that can be obtained from precision safety diagnostics. The results indicate that including the exposure environment significantly enhances model performance for predicting the chloride diffusion coefficient in concrete bridges in marine environments. Additionally, the three variable model demonstrates that effective predictions can be made using only data from precision safety diagnostics.
The domestic used car market continues to grow along with the used car online platform service. The used car online platform service discloses vehicle specifications, accident history, inspection history, and detailed options to service consumers. Most of the preceding studies were predictions of used car prices using vehicle specifications and some options for vehicles. As a result of the study, it was confirmed that there was a nonlinear relationship between used car prices and some specification variables. Accordingly, the researchers tried to solve the nonlinear problem by executing a Machine Learning model. In common, the Regression based Machine Learning model had the advantage of knowing the actual influence and direction of variables, but there was a disadvantage of low Cost Function figures compared to the Decision Tree based Machine Learning model. This study attempted to predict used car prices of six domestic brands by utilizing both vehicle specifications and vehicle options. Through this, we tried to collect the advantages of the two types of Machine Learning models. To this end, we sequentially conducted a regression based Machine Learning model and a decision tree based Machine Learning model. As a result of the analysis, the practical influence and direction of each brand variable, and the best tree based Machine Learning model were selected. The implications of this study are as follows. It will help buyers and sellers who use used car online platform services to predict approximate used car prices. And it is hoped that it will help solve the problem caused by information inequality among users of the used car online platform service.
Han, Chang Ho;Lee, Sangjoon;Park, Chul-Geon;Lee, Ji Yeon;Ryu, Young-Kee;Ko, Kuk Won
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.1
/
pp.684-692
/
2016
In the manufacturing process of the LQFP/TQFP (Low-profile Quad Flat Package/Thin Quad Flat Package), the requirement of a 3 dimensional inspection is increasing rapidly and a 3D inspection of the shape of a chip has become an important report of quality control. This study developed a 3 dimensional measurement system based on PMP (Phase Measuring Profilometry) for an inspection of the LQFP/TQFP chip and image processing algorithms. The defects of the LQFP/TQFP chip were classified according to the dimensions. The 2 dimensional optical system was designed by the dorm illumination to achieve constant light distribution, In the 3 dimensional optical system, PZT was used for moving 90 degree in phase. The problem of 2 ambiguity was solved from the measured moir? pattern using the ambiguity elimination algorithm that finds the point of ambiguity and refines the phase value. The proposed 3D measurement system was evaluated experimentally.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.