• Title/Summary/Keyword: inspection machine

Search Result 603, Processing Time 0.027 seconds

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.

Damage Detection of Non-Ballasted Plate-Girder Railroad Bridge through Machine Learning Based on Static Strain Data (정적 변형률 데이터 기반 머신러닝에 의한 무도상 철도 판형교의 손상 탐지)

  • Moon, Taeuk;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.206-216
    • /
    • 2020
  • As the number of aging railway bridges in Korea increases, maintenance costs due to aging are increasing and continuous management is becoming more important. However, while the number of old facilities to be managed increases, there is a shortage of professional personnel capable of inspecting and diagnosing these old facilities. To solve these problems, this study presents an improved model that can detect Local damage to structures using machine learning techniques of AI technology. To construct a damage detection machine learning model, an analysis model of the bridge was set by referring to the design drawing of a non-ballasted plate-girder railroad bridge. Static strain data according to the damage scenario was extracted with the analysis model, and the Local damage index based on the reliability of the bridge was presented using statistical techniques. Damage was performed in a three-step process of identifying the damage existence, the damage location, and the damage severity. In the estimation of the damage severity, a linear regression model was additionally considered to detect random damage. Finally, the random damage location was estimated and verified using a machine learning-based damage detection classification learning model and a regression model.

Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach (유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법)

  • Hwang, Hyunseok;Lee, Sangil;Kim, Sunghyun;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.125-140
    • /
    • 2018
  • As one of the processes in the manufacturing industry, quality inspection inspects the intermediate products or final products to separate the good-quality goods that meet the quality management standard and the defective goods that do not. The manual inspection of quality in a mass production system may result in low consistency and efficiency. Therefore, the quality inspection of mass-produced products involves automatic checking and classifying by the machines in many processes. Although there are many preceding studies on improving or optimizing the process using the data generated in the production process, there have been many constraints with regard to actual implementation due to the technical limitations of processing a large volume of data in real time. The recent research studies on big data have improved the data processing technology and enabled collecting, processing, and analyzing process data in real time. This paper aims to propose the process and details of applying big data for quality inspection and examine the applicability of the proposed method to the dairy industry. We review the previous studies and propose a big data analysis procedure that is applicable to the manufacturing sector. To assess the feasibility of the proposed method, we applied two methods to one of the quality inspection processes in the dairy industry: convolutional neural network and random forest. We collected, processed, and analyzed the images of caps and straws in real time, and then determined whether the products were defective or not. The result confirmed that there was a drastic increase in classification accuracy compared to the quality inspection performed in the past.

A Machine Learning Approach for Mechanical Motor Fault Diagnosis (기계적 모터 고장진단을 위한 머신러닝 기법)

  • Jung, Hoon;Kim, Ju-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • In order to reduce damages to major railroad components, which have the potential to cause interruptions to railroad services and safety accidents and to generate unnecessary maintenance costs, the development of rolling stock maintenance technology is switching from preventive maintenance based on the inspection period to predictive maintenance technology, led by advanced countries. Furthermore, to enhance trust in accordance with the speedup of system and reduce maintenances cost simultaneously, the demand for fault diagnosis and prognostic health management technology is increasing. The objective of this paper is to propose a highly reliable learning model using various machine learning algorithms that can be applied to critical rolling stock components. This paper presents a model for railway rolling stock component fault diagnosis and conducts a mechanical failure diagnosis of motor components by applying the machine learning technique in order to ensure efficient maintenance support along with a data preprocessing plan for component fault diagnosis. This paper first defines a failure diagnosis model for rolling stock components. Function-based algorithms ANFIS and SMO were used as machine learning techniques for generating the failure diagnosis model. Two tree-based algorithms, RadomForest and CART, were also employed. In order to evaluate the performance of the algorithms to be used for diagnosing failures in motors as a critical railroad component, an experiment was carried out on 2 data sets with different classes (includes 6 classes and 3 class levels). According to the results of the experiment, the random forest algorithm, a tree-based machine learning technique, showed the best performance.

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

Inspection System for The Metal Mask (Metal Mask 검사시스템)

  • 최경진;이용현;박종국
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.2
    • /
    • pp.1-9
    • /
    • 2003
  • We develop an experimental system to inspect a metal mask and, in this paper, introduce its inspection algorithm. This system is composed of an ASC(Area Scan Camera) and a belt type xy-table. The whole area of the metal mask is divided into several inspection blocks. The area of each block is equal to FOV(Field of View). For each block, the camera image is compared to the reference image. The reference image is made by gerber file. The rotation angle of the metal mask is calculated through the linear equation that is substituted two end points of horizontal boundary of a specific hole in a camera image. To calculate the position error caused by the belt type xy-table, HT(Hough-Transform) using distances among the holes in two images is used. The center of the reference image is moved as much as the calculated Position error to be coincided with the camera image. The information of holes in each image, such as centroid, size, width and height, are calculated through labeling. Whether a holes is mado correctly by laser machine or not, is judged by comparing the centroid and the size of hole in each image. Finally, we build the experimental system and apply this algorithm.

A Study on the Existing State of Preventive Maintenance and the Improvement Measures for a Point Machine (선로전환기 예방정비 현황 및 개선 방안에 관한 연구)

  • Lee, In-Hyun;Kim, Dae-Hyun;Kim, Min-Ho;Seo, Jung-Wook;Kim, Du-Ill;Jung, Ho-Hung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1174-1181
    • /
    • 2011
  • This paper investigates the current established preventive maintenance and its corresponding data on a point machine among railway signalling facilities and suggests a part of considerable plans when the policy of the preventive maintenance is modified. It is not appropriated to apply the optimized preventive replacement period considered with the cost simply. In that case, it is suggested that the reliability should be analyzed failure mode and effects through collecting the on-site failure data sufficiently. Then, that result can be proposed to adjust the proper criteria into the rational way by comparing the initial maintenance criteria. In this paper, the alternative way to determine the feasibility of the inspection period using failure probability is introduced.

  • PDF

Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines

  • Kurtoglu, Ahmet Emin
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Steel girders are the structural members often used for passing long spans. Mostly being subjected to patch loading, or concentrated loading, steel girders are likely to face sudden deformation or damage e.g., web breathing. Horizontal or vertical stiffeners are employed to overcome this phenomenon. This study aims at assessing the feasibility of a machine learning method, namely the support vector machines (SVM) in predicting the patch loading resistance of longitudinally stiffened webs. A database consisting of 162 test data is utilized to develop SVM models and the model with best performance is selected for further inspection. Existing formulations proposed by other researchers are also investigated for comparison. BS5400 and other existing models (model I, model II and model III) appear to yield underestimated predictions with a large scatter; i.e., mean experimental-to-predicted ratios of 1.517, 1.092, 1.155 and 1.256, respectively; whereas the selected SVM model has high prediction accuracy with significantly less scatter. Robust nature and accurate predictions of SVM confirms its feasibility of potential use in solving complex engineering problems.

A Study on Absorption Device of Surge Rising Pressure Occurring when Suddenly Braking Action in the Hydraulic Driving Part of Textiles Let off (섬유송출 유압구동부 급제동시 발생하는 충격상승압 흡수장치에 관한 연구)

  • 이재구;김정현;김도태;김성동;정선환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.84-91
    • /
    • 2003
  • The equipment of textiles let off is a part of inspection machine which inspects finished textiles and it checks up textiles through that. This study suggests a method to select the capacity and initial gas pressure of accumulator to control surge rising pressure occurring when suddenly braking action to a desired degree. An accumulator in hydraulic systems is by hydraulic machinery which stores kinetic energy of inertia body during braking. A series of computer simulations were done for the brake action The results of the simulation work were compared with those of experiments.

The Application of the Welding Joint Tracking System (용접 이음 추적시스템의 응용)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.92-99
    • /
    • 2007
  • Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding systems, is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. In this paper, novel presented, developed vision processing techniques are detailed, and their application in welding fabrication is covered. The software for joint tracking system is finally proposed.