• Title/Summary/Keyword: insoluble phosphate

Search Result 97, Processing Time 0.039 seconds

A Study on Phosphate Metabolism of Chloroplast Isolated from Spinach (시금치에서 분이한 엽록체의 인산대사에 관한 연구)

  • 이종삼
    • Journal of Plant Biology
    • /
    • v.19 no.3
    • /
    • pp.71-84
    • /
    • 1976
  • In order to observe the phosphate metabolism in chloroplast, the contents of inorganic phosphate and various compounds in chloroplast from spinach leaf tissues were investigated during the reaction in the light and dark in the reaction mixture and the turnover of phosphate in chloroplast was compared with that of whole cell system: 1. The phosphorus of DNA in chloroplast appears to be transferred from inorganic phosphate, while in whole cell system from phosphate pool. 2. $^{32}P-phosphate$ content of acid soluble fraction in chloroplast as well as in whole cell system was more increased in the light than dark during the reaction. It was noted to be caused by the stimulation of sugar phosphate synthesis in the light. 3. It was confirmed that polyphosphate exists in chloroplast as well as whole cell. Acid insoluble polyphosphate content in whole cell system was significantly decreased during the reaction and the similar tendency was also observed in chloroplst. It is, therefore, considered that acid insoluble polyphosphate also play an most important role as a phosphate pool respectively in chloroplast and in cytoplasm. 4. Protein and lipid phosphorus in chloroplast as well as whole cell system were transferred from acid insoluble polyphosphate.

  • PDF

Isolation and Cultural Characteristics of a Phosphate-solubilizing Fungus, Penicillium sp. PS-113 (인산가용화 사상균, Penicillium sp. PS-113 균주의 분리 및 배양특성)

  • 강선철;최명철
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.497-501
    • /
    • 1998
  • A fungus with high phosphate solubilizing activites was isolated from soil using potato dextrose agar-calcium phosphate medium and identified to Penicillium sp. PS-113, based on the morphological characteristics of conidiophore and conidia; flask shape of phialide, simple branching type of conidiophore, and columnar shape of conidial head, in malt extract agar and potato dextrose agar media. The optimum temperature ad initial pH to solubilize rock phosphate in potato dextrose broth-rock phosphate medium were 30$^{\circ}C$ and pH 8.0, respectively. In these conditions phosphate solubilizing activities of Penicillium sp. PS-113 against four types of insoluble phosphate like tricalcium-phosphate, aluminium phosphate, hydroxyapatite and rock phosphate were quantitatively determined. As results, this fungus highly produced free phosphates to the culture broth with the concentrations of 1,283 ppm against tricalcium-phosphate, 585 ppm against rock phosphate, 528 ppm against aluminium phosphate, and 242 ppm against hydroxyapatite, respectively.

  • PDF

Isolation, Identification and Physiological Characteristics of Biofertilizer Resources, Insoluble Phosphate-Solubilizing Bacteria (미생물비료 생물자원인 불용성인산 가용화 세균의 분리, 동정 및 생리적 특성)

  • 손홍주
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.51-55
    • /
    • 2003
  • To develop environment-friendly biofertilizer solubilizing insoluble phosphates, a bacterium possessing a high ability to solubilize $Ca_{3}(PO_{4})_{2}$) was isolated from the rhizosphere of peas. On the basis of its morphological, cultural, physiological characteristics, and Vitek analysis, this bacterium was identified as Pantoea agglomerans. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. agglomerans R-38 were 3% of glucose.0.1% of TEX>$NH_{4}NO_{3}$, 0.02% of $MgSO_{4}\cdot\7H_{2}O$, and 0.06% of $CaCl_{2}\cdot\2H_{2}O$ along with initial pH 7.5 at $30^{\circ}C$. The highest soluble phosphate production under optimum condition was 898 mg/L after 5 days of cultivation. The solubilization of insoluble phosphate was associated with a drop in the pH of the culture medium. The strain produced soluble phosphate to the culture broth with the concentrations of 698 mg/L against CaHPO$_4$, 912 mg/L against hydroxyapatite, 28 mg/L against $FePO_{4}\cdot\4H_{2}O$, and 19 mg/L against $AIPO_{4}$, respectively.

고정화된 Pantoea aggromerans에 의한 토양에서의 가용성 인산의 생성

  • Im, Won-Bong;Jeong, Gwi-Taek;Park, No-Dong;Yun, Jeong-Han;Kim, Si-Uk;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.403-406
    • /
    • 2002
  • This experimental shows the possibility of using as biofertilizer, which convert insoluble inorganic phosphate salts to plant-usable phosphate type by immobilized microorganism with calcium alginate. In the case of culture of P. agglomerans on constant medium pH, phosphate was produced 357 mg/L after 18hrs. And in the case of culture of immobilzed P. agglomerans bead, phosphate was produced maximum 295.6 mg/L after 120 hrs. Also as using rock phosphate as insoluble phosphate salts, phosphate was respectably produced 190.3 and 195.2 mg/L after 36 hrs at free cells and immobilized cells. In our experiments, the using soils contained 23.16 g-P/kg-soil total phosphate and 3.76 g-P/kg-soil soluble phosphate. The result of 1g immobilized bead seeding, soluble phosphate was produced maximum 6.14 g-P/kg-soil phosphate and this value was increased continuously.

  • PDF

Solubilization of Insoluble Phosphates by Aspergillus sp. PS-104 Isolated from Soil (토양에서 분리한 Aspergillus sp. PS-104 균주에 의한 난용성 인산염 분해)

  • Kang, Sun-Chul;Shin, Seung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2007
  • Phosphate-solubilizing microorganisms were isolated from soil around Kyungnam and Kyungbook regions using potato dextrose agar-calcium phosphate medium. A fungus with the greatest phosphate-solubilizing activity was selected and identified to Aspergillus sp. PS-104, based on the morphological characteristics of conidiophore and conidia; unbranching type of conidiophore, terminally swelling of conidiophore and septate of mycelium, in malt extract agar and potato dextrose agar media. The optimum temperature and initial pH to solubilize rock phosphate in potato dextrose broth-rock phosphate medium were $30^{\circ}C$ and pH 7.0, respectively. In these optimum conditions, phosphate-solubilizing activities of Aspergillus sp. PS-104 against four twos of insoluble phosphate, tricalcium phosphate, aluminium phosphate, hydroxyapatite and rock phosphate, were quantitatively determined. As result, the maximum phosphate-solubilizing activity was obtained with tricalcium-phosphate (1,900 ppm) while minimum activity was obtained with hydroxyapatite (320 ppm). Futhermore, phosphate-solubilizing activity of Aspergillus sp. PS-104 was found higher when treated with nitrates as compared to the ammonium salts as a nitrogen sources.

Isolation and Phosphate-Solubilizing Characteristics of PSM, Aeromonas hydrophila DA33

  • Song, Ok-Ryul;Lee, Seung-Jin;Lee, Mi-Wha;Choi, Si-Lim;Chung, Soo-Yeol;Lee, Young-Gyun;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • bacterium having high abilities to solubilize in-organic phosphate was isolated from cultivated soils. The strain was identified as Aeromonas hydrophila DA33, based on the physiological and biochemical properties. The optimum temperature and initial pH to solubilize insoluble phosphate in sucrose minimal medium were 3$0^{\circ}C$ and pH 5.0, respectively. In these conditions, phosphate-solubilizing activities of the strain against two types of insoluble phosphate were quantitatively determined. When glucose was used for carborn source, the strain had a marked mineral phospahte solubilizing activity. Inorganic phospahte solubilization was directly related to the pH drop by the strain. Analysis of the culture medium confirmed the production of gluconic acid as the main organic acid released by Aeromonas hydrophila DA33.

  • PDF

Isolation and Characterization of a Novel Bacterium, Bacillus subtilis HR-1019, with Insoluble Phosphates Solubilizing Activity (인산가용화 활성을 갖는 바실러스 서브틸리스 HR-1019 분리와 특성)

  • Lee, Yong-Suk;Park, Dong-Ju;Kim, Jae Hoon;Kim, Hyeong Seok;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.242-248
    • /
    • 2013
  • The objective of this study was to develop a mineral phosphate-solubilizing bacterium as a biofertilizer. A mineral phosphate-solubilizing bacterium HR-1019 was isolated from cultivated soils. It was identified as Bacillus subtilis by 16S rDNA analysis. The phosphate-solubilizing activities of the HR-1019 strain against three types of insoluble phosphate, hydroxyapatite, tri-calcium phosphate, and aluminum phosphate were quantitatively determined. When 5% of glucose concentration was used as a carbon source, the strain showed marked mineral phosphate-solubilizing activity. Mineral phosphate solubilization was directly related to pH drop in the culture solution of the strain. The pathogenic activity and antifungal effects of the HR-1019 strain were measured inclear zones formed in PDA media.

Isolation and Characteristic of the Phosphate Solubilizing Bacteria Klebsiella sp. DA 71-1 (Hydroxyapatite 인산염 가용화 균 Klebsiella sp. DA 71-1의 분리와 가용화특성)

  • 이진우;정연주;이경아;최시림;김영길;최용락
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.174-179
    • /
    • 2004
  • To develop high effiency biofertilizer, a bacterium having ability to solubilize inorganic phosphate was isolated from cultivated soils, using a sucrose minimal agar-hydroxyapatite medium. The strain was identified as Klebsiella sp. DA7l-1, based on the physiological and biochemical properties. The activity of solubilizing inorganic phosphate of Klebsiella sp. DA7l-1 against three types of insoluble phosphate such as tri-calcium phosphate, aluminium phosphate, hydroxyapatite were quantitatively determined. The results indicated that the strain solubilized hydroxyapatite. The MPS (mineral phosphate solubilizing) conditions of Klebsiella sp. DA7l-1, were measured to determine the optimal conditions. The optimal temperature and initial pH to solubilize insoluble phosphate in sucrose minimal medium were $30^{\circ}C$ and pH 6.0, respectively.

FACTORS INFLUENCING THE FORMATION OF INSOLUBLE GLUCAN BY STREPTOCOCCUS SOBRINUS (Streptococcus sobrinus의 비수용성 글루캔 합성에 영향을 미치는 인자)

  • Chung, Jin;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.90-97
    • /
    • 2000
  • There are various kinds of factors associated with the formation of dental plaque in oral cavity such as nutrient molecules and chemical agents. The factors influencing the formation of insoluble glucan by Streptococcus sobrinus and its replication were examined on orthodontic wires. The results were as follows: 1. Insoluble glucan was well produced in the media initially adjusted at pH 7.0 than pH 5.5 or pH 8.5 like bacterial replication. 2. The synthesis of insoluble glucan and bacterial replication were significantly increased in the media containing 2.5% yeast extract. The formation of insoluble glucan was inhibited by 10 folds in the media containing 20% of sucrose than 1.25%, but the replication of bacteria was increased by 20 folds. 3. Insoluble glucan was significantly formed at a concentration of 1.0mM of calcium chloride, 40mM of potassium chloride, 0.1mM of magnesium chloride, while the replication of bacteria was little influenced by them regardless their concentration. 4. The formation of insoluble glucan and bacterial replication were significant in the media containing 10mM of sodium bicarbonate, but both were completely inhibited at 100mM or above. The production of insoluble glucan and the bacterial replication were largely decreased at 10mM of Tris while insoluble glucan was formed in abundance at 100mM of Tris. 5. The synthesis of insoluble glucan and the bacterial replication were inhibited at 10mM or above of sodium phosphate and potassium phosphate.

  • PDF

Characteristics of Bacillus sphaericus PSB-13 as Phosphate Solublizing Bacterium Isolated from Citrus Orchard Soil (감귤원 토양에서 분리한 인산염 가용화 미생물 Bacillus sphaericus PSB-13의 특성)

  • Joa, Jae-Ho;Lim, Han-Cheol;Han, Seung-Gap;Chun, Seung-Joung;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.405-411
    • /
    • 2007
  • This study was carried out to measure insoluble phosphorus fractions content fixed in different soil type and isolate a superior phosphate solublizing bacteria(PSB) producing free phosphate in citrus orchard soil. Distribution of insoluble phosphate fraction ordered Al-P>Ca-P>Fe-P in the investigated citrus orchards. Insoluble phosphate fraction such as Al-P, Ca-P, Fe-P were higher in volcanic ash than in non-volcanic ash soil. A PSB with high holo zone in PDA-P medium isolated from citrus orchard soil. This strain identificated by MIDI system as Bacillus sphaericus. The optimum growth of pH and temperature were at 4~5, $30^{\circ}C$, respectively. When Bacillus sphaericus cultured at $25^{\circ}C$, 150 rpm condition in LB broth medium included different phosphate. Bacillus sphaericus produced free phosphate in the culture broth medium from tricalcium-phosphate(207.0 ppm), aluminium phosphate(324.5 ppm) and hydroxyapatite(334.8 ppm) and Phosphatase activity of Bacillus sphaericus was higher at $35^{\circ}C$ culture condition than that of $25^{\circ}C$. Two type preparation inoculated Bacillus sphaericus made with carrier materials such as Bentonite, $CaCO_3$, Sodium alginate. Density of PSB in this preparation conserved at $10^5c.f.u.\;g^{-1}$ level during storage in different temperature condition for 7 month. It also showed that free phosphate produced at PDA-P medium.