• Title/Summary/Keyword: insolubilization

Search Result 15, Processing Time 0.024 seconds

Improvement of Functional Properties of Ovotransferrin by Phosphorylation through Dry-heating in the Presence of Pyrophosphate

  • Hayashi, Yoko;Li, Can-Peng;Enomoto, Hirofumi;Ibrahim, Hisham R.;Sugimoto, Yasushi;Aoki, Takayoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.596-602
    • /
    • 2008
  • Ovotransferrin (OTf) was phosphorylated by dry-heating in the presence of pyrophosphate at pH 4.0 and $85^{\circ}C$ for 1 and 5 d, and the functional properties of phosphorylated OTf (PP-OTf) were investigated. The phosphorus content of OTf increased to 0.91% as a result of phosphorylation and the electrophoretic mobility of PP-OTf also increased. Although the solubility of dry-heated OTf slightly decreased, the decrease was reduced by phosphorylation. The stability against heat-induced insolubilization of OTf was somewhat improved by phosphorylation, but more than 70% of PP-OTf was insolubilized when it was heated at $70^{\circ}C$ for 10 min at pH 7.0. However, heat-induced insolubilization of PP-OTf was reduced when it was heated in the presence of phosphorylated ovalbumin. This may explain the excellent stability of phosphorylated egg white protein against heat-induced insolubilization which was reported previously. The emulsifying property of OTf was also somewhat improved by phosphorylation. The calcium phosphate-solubilizing ability of PP-OTf was enhanced. Although the degree of phosphorylation of OTf by dry-heating in the presence of pyrophosphate was similar to that of ovalbumin, the improvement of properties of PP-OTf was considerably different from those of phosphorylated ovalbumin.

Distribution of Sulfate-reducing Bacteria in Landfill Leachate and their Role on Insolubilization of Heavy metals (폐기물매립지 침출수에서 황산염환원균의 분포와 중금속 불용화역할)

  • Jung, Kweon;Shin, Jai-Young;Jung, Il-Hyun;Takamizawa, Kazuhiro;Yoo, Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.27-39
    • /
    • 1997
  • This study, collaborated Gifu University, Japan, was performed to analyze chemical pollutants and microorganism and to clarify the distribution of sulfate-reducing bacteria and their insolubilization of heavy metal ions in leachates sampled seasonally between 1994 and 1996 from Nanjido waste landfill site, sampled 4 times between 1995 and 1996 from Pusan and Daejeon waste landfill site, and sampled 1 time between 1992 and 1994 from Hokkaido, Nagoya, Osaka and Hukuoka waste landfill site in Japan. The results were as follows: 1. The temperatures of internal leachate and leachate effluent were 40$\circ$C and 30$\circ$C, respectively, and the pH values of both leachates were about 8.0 at Nanjido waste landfill site. The concentration of SO$_4^{-2}$ gradually increased with the degree of stabilization and that of NO$_3$-N was detected in a part of sampling sites at one and half years, and in all sampling sites at 3 years after completion of landfill. 2. The organic substances in leachate of Nanjido waste landfill site decreased with the degree of stabilization and they were very fluctuated with measuring point and time. The concentration of organic substance and heavy metals in internal leachate were higher than in leachate effluent and those of Cd, Hg, and Pb were lower than detection limit except a part of samples in 1996. 3. APCs in internal leachate and leachate effluent were not much different and the minimum of APCs in internal leachate and leachate effluent were $1.0\times 10^4$/ml and $4.0\times 10^1$/ml, respectively. 4. The maximums of SRBs in Nanjido, Pusan, and Daejeon waste landfill site were 9180 MPN/ml, 24000 MPN/ml, and 348 MPN/ml, respectively and the maximum of SRBs in Japan waste landfill site was 9300 MPN/ml. 5. During 2-week-SRB culture, the values of MPN were high at 50$\circ$C for initial culture period and at 30$\circ$C for last culture period. MPN started to appear at first day and rapidly increased between 7th day and 9th day. 6. Cadmium and copper were insolubilized by SRB within 6 hr and iron and zinc were done within 48 hr. The rates of insolubilization of Cd, Cu, Fe, Zn, T-Cr were 100%, 99.5%, 95.0%, 99.8%, 16.1% after 48 hr treatment with SRB, respectively.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.29-34
    • /
    • 2012
  • For the purpose of developing liner board for water-resistant corrugated board in the cold chain system, several types of base paper for corrugated board were purchased from the market and 6 different boards were produced in the paperboard mill by applying the chemicals on the base paper. Then, water-moisture resistant performance and physical properties of the boards were compared each other. The liner board which is dried at high temperature with pressure by Condebelt papermaking system(CK paper) showed a superior performance in strength over common liner boards. Strength of the board increased by surface chemical treatment up to 60% of compressive strength and 30% of bursting strength. Starch insolubilization with Ammonium-Zirconium Carbonate(AZC) and surface coating with a surface size and a moisture resistant chemical on CK paper showed the best result. Therefore, this method was recommended to produce the outer liner board for water -resistant corrugated board.

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(III) - Effects of types of base paper and surface treatments on physical properties of the base paper for water resistant corrugated board - (농산물 저온유통용 내수 골판지 상자의 제조(제3보) -원지의 종류와 표면처리 방법에 따른 내수 골판지 원지의 물성-)

  • Jo Jung-Yeon;Min Choon-Ki;Shin Jun-Seop
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.70-77
    • /
    • 2005
  • For the purpose of developing liner board for water resistant corrugated board in the cold chain system, several types of base paper for corrugated board were purchased from the market and 6 different boards were produced in the mill by applying the chemicals, chosen in the previous studies, on the base paper. Then water-moisture resistance and physical properties of the boards were compared each other. The liner board which is dried at high temperature with pressure by Condebelt (CK paper) showed a superior performance in strength over common liner boards. Strength of the board increased by surface chemical treatment up to $60\%$ of compressive strength and $30\%$ of burst strength. Starch insolubilization with Ammonium Zirconium Carbonate and surface coating with a surface sizing agent and a moisture resistant chemical on CK paper showed the best result. Therefore this method was recommended to produce the outer liner board for water resistant corrugated board.

Effect of $Cd^{2+}$ and $Cu^{2+}$ on the Growth of a Methanogen and a Sulfate-Reducing Bacterium isolated from sea-based landfill (해안폐기물매립지로부터 분리한 메탄생성균과 환산염 환원균의 $Cd^{2+}$$Cu^{2+}$에 대한 감수성 검토)

  • Chang, Young-Cheol;Jeong, Kweon;Jeon, Eun-Mi;Bae, Il-Sang;Kim, Kwang-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.65-74
    • /
    • 2000
  • The sensitivity of a mehtanogen and sulfate-reducing bacterium isolated from a sea-based landfill site Cd$^{2+}$ and CU$^{2+}$ was studied. Methanogens and sulfate-reducing bacteria in leachates of the waste disposal site were enumerated using the MPN method. Methanobacterium thermoautotrophicum KHT, isolated from the leachate, could not grow at 0.5 mM Cd$^{2+}$ or 1.0 mM CU$^{2+}$. Desulfotomaculum sp. RHT, isolated from the same leachate, was able to insolubilization 3.0 mM Cd$^{2+}$ or 2.0 mM CU$^{2+}$ by production of hydrogen sulfide. When strains KHT and RHT were cultured together in the presence of the heavy metals, strain KHT could grow at high heavy metal concentrations after insolubilization of the metals by strain RHT. strain RHT.

  • PDF

Production of Protein Hydrolyzate, that can be used as Food Additives, from Okara (산업폐기물인 비지로부터 식품첨가물로 이용할 수 있는 단백질 가수분해물의 생산)

  • Woo, Eun-Yeol;Kim, Min-Jung;Shin, Weon-Sun;Lee, Kyung-Ae;Kim, Kang-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.769-773
    • /
    • 2001
  • Protein content of okara and soybean were found to be 37.3% and 42.5%, respectively by micro-Kjeldahl analysis. Solubility of okara protein in phosphate buffer (pH 8) was 10% versus soy protein of 68.4%. Insolubilization of okara protein was mostly due to disulfide bonding between cysteine residues caused by excessive heat treatment during soymilk processing: hydrophobic interactions and hydrogen bondings were involved to lesser extent. Optimum extraction temperature and time were $60^{\circ}C$ and 40 min. Typical solubility profile of soy protein disappeared for okara protein though minimum solubility of the protein was around pH 3.0. Treating okara with protease was effective in solubilizing okara protein and solubility increased to 19.2%. Optimum reaction temperature and time were $80^{\circ}C$ and 50 min, respectively. Cell wall degrading enzyme did not increase solubility of the protein, however. Through enzymatic reaction okara protein could be effectively solubilized for uses as food ingredient.

  • PDF

Fabrication of nanoaggregates of triple hydrophilic block copolymers by binding of ionic surfactants

  • Khanal, Anil;Yusa, Shin-Ichi;Nakashima, Kenichi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.302-302
    • /
    • 2006
  • Nanoaggregates of triple hydrophilic block copolymers comprised of poly(ethylene oxide), poly(sodium 2-acrylamido)-2-methylpropanesulfonate), and poly(methacrylic acid) (PEO-PAMPS-PMAA) and the cationic surfactant, dodecyltrimethylammonium chloride (DTAC) have been fabricated. The formation of $^{\circ}^{\circ}$the nanoaggregates is based on electrostatic interaction of sulfonate and carboxylate groups of PAMPS and PMAA blocks with the cationic surfactant, which results in insolubilization of these blocks. The formation of micelle is observed by dynamic light scattering measurements. Binding of DTAC to the anionic blocks of PEO-PAMPS-PMAA is confirmed by electrophoresis measurements.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System

  • Jo, Jung-Yeon;Min, Choon-Ki;Shin, Jun-Seop
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.459-463
    • /
    • 2006
  • For the purpose of developing liner board for water-resistant corrugated board in the cold chain system, several types of base paper for corrugated board were purchased from the market and 6 different boards were produced in the paperboard mill by applying the chemicals on the base paper. Then, water-moisture resistant performance and physical properties of the boards were evaluated and compared each other. The liner board which is dried at high temperature with pressure by the Condebelt showed a superior performance in strength over conventional liner boards. Strength of the board increased by surface chemical treatment up to 60% of compressive strength and 30% of bursting strength. Starch insolubilization with Ammonium-Zirconium -Carbonate and surface coating with a surface size and a moisture resistant chemical on CK paper showed the best result. Therefore, this method was recommended to produce the outer liner board for water -resistant corrugated board.

  • PDF

Purification of Isoflavone from Soybean Hypocotyls using Various Resins

  • Choi Yeon-Bae;Kim Kang-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.3
    • /
    • pp.221-226
    • /
    • 2005
  • Isoflavone was extracted with various concentration of aqueous methanol using whole hypocotyls as the starting material. Whole hypocotyls were preferred as the raw material because the residue could be easily removed from the solvent after the extraction process. Extraction yield was almost constant at the methanol concentration of $20-80\%$. Most of the isoflavone was extracted within 1 hr, and the extraction yield remained almost constant thereafter. When the concentration of methanol was $80\%$, the content of total solid was reduced due to the reduced extraction of contaminating protein as the result of protein insolubilization. Among resins tested, Diaion HP-20, Amberlite XAD-16, and Amberlite IRC-50 showed the highest capacity to absorb the compound. Open column chromatography with Diaion HP-20 showed that $80\%$ aqueous ethanol was most efficient as the eluting solvent with final recovery of the phytochemical being more than $95\%$. Maximum adsorption of the phytochemical occurred at the acidic pH 2-4. When the spatial velocity was increased to 15 and more, the degree of adsorption was decreased, whereas below spatial velocity of 15, the adsorption capacity of isoflavone to the resin was almost constant. The purity of the isoflavone purified by column chromatography was $78\%$.

Modification of Soy Protein Film by Formaldehyde (Formaldehyde 처리에 의한 대두단백 필름의 물성 개선)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.372-378
    • /
    • 1998
  • Two types of formaldehyde-treated soy protein isolate (SPI) films, formaldehyde-incorporated and formaldehyde-adsorbed films, and control SPI films were prepared. Cross-linking effect of formaldehyde on selected film properties such as color, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were determined. Physical properties of formaldehyde-incorporated films were not geneally different from those of control films, while almost all of those among formaldehyde-adsorbed films were significantly different. Through cross-linking development within formaldehyde-adsorbed films, WS decreased significantly (P<0.05) from 26.1% to 16.6%, and TS increased two times while E decreased two times compared with control films. This was caused by insolubilization and hardening of protein by cross-linking most likely attributed to the significant changes in properties of protein films reacted with formaldehyde.

  • PDF