• 제목/요약/키워드: insertional mutation

검색결과 15건 처리시간 0.018초

Alu 서열과 분자생물학적 특징 (Alu sequences and molecular features)

  • 박은실;홍경원;김희수
    • 생명과학회지
    • /
    • 제14권6호
    • /
    • pp.1028-1039
    • /
    • 2004
  • 6500만년동안, Alu 서열은 RNA-중합효소 III에 의한 전사체를 통해 증폭해왔고, 영장류 게놈 내에 약 140만 복사의 수에 도달되었다. 그들은 가동성 인자 중에서 가장 큰 집단이며, 인간 게놈의 $10\%$를 구성한다. Alu 서열이 유전적으로 기능이 없다고 생각되었지만, 최근 많은 연구자들이 새로운 기능 및 질병과의 관련성을 증명해왔다 이들 Alu 서열은 삽입돌연변이, Alu-매개 재조합, 유전자 발현에 대해 유전자 전환 그리고 스플라이싱 사이트를 유발하고, 유전자 구조, 단백질 서열, 스플라이싱 모티프와 발현 양상에 영향을 준다. 우리는 Alu의 구조와 기원, 그들 패밀리의 컨센서스 서열, Alu의 진화와 분포 그리고 그들의 기능에 대하여 요약 정리하였다. 또한 영장류의 진화과정에 있어 질병과 관련하여 Alu 패밀리의 새로운 연구방향을 제시하였다.

Functional Analysis of a Histidine Auxotrophic Mutation in Gibberella zeae

  • Seo, Back-Won;Kim, Hee-Kyoung;Lee, Yin-Won;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • 제23권2호
    • /
    • pp.51-56
    • /
    • 2007
  • A plant pathogenic fungus, Gibberella zeae (anamorph: Fusarium graminearum), not only generates economic losses by causing disease on cereal grains, but also leads to severe toxicosis in human and animals through the production of mycotoxins in infected plants. Here, we characterized a histidine auxotrophic mutant of G. zeae, designated Z43R1092, which was generated using a restriction enzyme-mediated integration (REMI) procedure. The mutant exhibited pleiotropic phenotypic changes, including a reduction in mycelial growth and virulence and loss of sexual reproduction. Outcrossing analysis confirmed that the histidine auxotrophy is linked to the insertional vector in Z43R1092. Molecular analysis showed that the histidine requirement of Z43R1092 is caused by a disruption of an open reading frame, designated GzHIS7. The deduced product of GzHIS7 encodes a putative enzyme with an N-terminal glutamine amidotransferase and a C-terminal cyclase domain, similar to the Saccharomyces cerevisiae HIS7 required for histidine biosynthesis. The subsequent gene deletion and complementation analyses confirmed the functions of GzHIS7 in G. zeae. This is the first report of the molecular characterization of histidine auxotrophy in G. zeae, and our results demonstrate that correct histidine biosynthesis is essential for virulence, as well as sexual development, in G. zeae. In addition, our results could provide a G. zeae histidine auxotroph as a recipient strain for genetic transformation using this new selectable marker.

Vibrio parahaemolyticus collagenase 불활성화 돌연변이체의 제조 및 특성 (Construction and Characterization of the Vibrio parahaemolyticus Collagenase Inactivated Mutant)

  • 이재원;전인준;강호영;차재호
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.362-367
    • /
    • 2004
  • 장염비브리오균의 숙주 내 감염을 일으키는 기작을 이해하기 위하여 세포외 효소 중의 하나인 콜라겐분해효소의 유전자가 불활성화된 돌연변이체를 제작하였다. 콜라겐분해효소의 유전자인 vppC 유전자에 항생제 내성 유전자인 nptII를 삽입하여 제작된 재조합 DNA를 suicide vector인 pDMS197에 클로닝하여 pVCM03이라 명명하였다. 재조합 suicide 플라스미드 pVCM03을 E. coli 7213에 형질전환하여 접합을 통하여 원 균주인 V. varahaemolyticus 04에 전달하였다. 전달된 pVCM03 유래의 재조합 vvpC::npfII DNA는 homologous recombination에 의해 wild-type allele와 교환되어 돌연변이체를 형성하게 되고, 돌연변이체는 10% sucrose가 함유된 TCBS 배지에서 선별되었다. Allele exchange는 PCR에 의한 증폭된 DNA의 크기 비교로 확인하였다. 돌연변이체인 V. parahaemolyticus CM은 원 균주와 비교하였을 때 약 4배정도 낮은 콜라겐 분해 활성을 나타내었고, vero cell을 이용한 MTT assay에서도 원 균주에 비하여 낮은 세포독성을 보였다.

Role of eptC in Biofilm Formation by Campylobacter jejuni NCTC11168 on Polystyrene and Glass Surfaces

  • Lim, Eun Seob;Kim, Joo-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1609-1616
    • /
    • 2017
  • The complex roles of cell surface modification in the biofilm formation of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are poorly understood. In a screen of mutants from random transposon mutagenesis, an insertional mutation in the eptC gene (cj0256) resulted in a significant decrease in C. jejuni NCTC11168 biofilm formation (<20%) on major food contact surfaces, such as polystyrene and borosilicate glass, when compared with wild-type cells (p < 0.05). In C. jejuni strain 81-176, the protein encoded by eptC modified cell surface structures, such as lipid A, the inner core of lipooligosaccharide, and the flagellar rod protein (FlgG), by attaching phosphoethanolamine. To assess the role of eptC in C. jejuni NCTC11168, adherence and motility tests were performed. In adhesion assays with glass surfaces, the eptC mutant exhibited a $0.77log\;CFU/cm^2$ decrease in adherence compared with wild-type cells during the initial 2 h of the assay (p < 0.05). These results support the hypothesis that the modification of cell surface structures by eptC affects the initial adherence in biofilm formation of C. jejuni NCTC11168. In motility tests, the eptC mutant demonstrated reduced motility when compared with wild-type cells, but wild-type cells with the transposon inserted in a gene irrelevant to biofilm formation (cj1111c) also exhibited decreased motility to a similar extent as the eptC mutant. This suggests that although eptC affects motility, it does not significantly affect biofilm formation. This study demonstrates that eptC is essential for initial adherence, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase

  • Bashyal, Narayan;Lee, Tae-Young;Chang, Da-Young;Jung, Jin-Hwa;Kim, Min Gyeong;Acharya, Rakshya;Kim, Sung-Soo;Oh, Il-Hoan;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.479-494
    • /
    • 2022
  • Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.