• Title/Summary/Keyword: insertion locus

Search Result 23, Processing Time 0.02 seconds

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

Microbial Forensics: Comparison of MLVA Results According to NGS Methods, and Forensic DNA Analysis Using MLVA (미생물법의학: 차세대염기서열분석 방법에 따른 MLVA 결과 비교 및 이를 활용한 DNA 감식)

  • Hyeongseok Yun;Seungho Lee;Seunghyun Lim;Daesang Lee;Sehun Gu;Jungeun Kim;Juhwan Jeong;Seongjoo Kim;Gyeunghaeng Hur;Donghyun Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.507-515
    • /
    • 2024
  • Microbial forensics is a scientific discipline for analyzing evidence related to biological crimes by identifying the origin of microorganisms. Multiple locus variable number tandem repeat analysis(MLVA) is one of the microbiological analysis methods used to specify subtypes within a species based on the number of tandem repeat in the genome, and advances in next generation sequencing(NGS) technology have enabled in silico anlysis of full-length whole genome sequences. In this paper, we analyzed unknown samples provided by Robert Koch Institute(RKI) through The United Nations Secretary-General's Mechanism(UNSGM)'s external quality assessment exercise(EQAE) project, which we officially participated in 2023. We confirmed that the 3 unknown samples were B. anthracis through nucleic acid isolation and genetic sequence analysis studies. MLVA results on 32 loci of B. anthracis were analysed by using genome sequences obtained from NGS(NextSeq and MinION) and Sanger sequencing. The MLVA typing using short-reads based NGS platform(NextSeq) showed a high probability of causing assembly error when a size of the tandem repeats was grater than 200 bp, while long-reads based NGS platform(MinION) showed higher accuracy than NextSeq, although insertion and deletion was observed. We also showed hybrid assembly can correct most indel error caused by MinION. Based on the MLVA results, genetic identification was performed compared to the 2,975 published MLVA databases of B. anthracis, and MLVA results of 10 strains were identical with 3 unkonwn samples. As a result of whole genome alignment of the 10 strains and 3 unknown samples, all samples were identified as B. anthracis strain A4564 which is associated with injectional anthrax isolates in heroin users.

Coat Color Patterns and Genotypes of Extension and Agouti in Hanwoo and Jeju Black Cattle (제주흑우와 한우에서 Extension, Agouti 유전자형과 모색 출현 양상)

  • Han, Sang-Hyun;Cho, In-Cheol;Kim, Jae-Hwan;Ko, Moon-Suck;Kim, Young-Hoon;Kim, Eun-Young;Park, Se-Pill;Lee, Sung-Soo
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.494-501
    • /
    • 2011
  • To understand the relationship between coat color inheritance patterns and genotypes of Extension (E) and Agouti (A) loci in cattle, the genotypes for melanocortin-1 receptor (MC1R) and agouti signaling protein (ASIP) were analyzed in Hanwoo, Jeju black cattle (JBC), and their crossbred progeny. Three MC1R alleles ($E^D$, $E^+$, and e) were found in the black-colored JBC population. JBC had no recessive homozygotes (e/e), but this genotype was predominant in the Hanwoo breed. However, MC1R $E^+$/e Hanwoo did not produce a black coat color as they appeared either as brown or solid red. For ASIP, three genotypes (A/A, A/$A^{Br}$, and $A^{Br}/A^{Br}$) were determined by insertion/deletion of an L1-BT element in Hanwoo. The ASIP $A^{Br}$ allele was rarely observed, and no ASIP $A^{Br}/A^{Br}$ homozygotes were detected in the JBC population. Cattle carrying ASIP $A^{Br}$ did not show any agouti-like brindle pigmentation patterns in either breed or their progeny. The coat colors of the crossbred progeny were discriminated by two colors, yellowish-brown versus dark-brown or black, and their coat colors were directly related to the genotypes of the Extension locus, yellowish-brown (e/e) and dark-brown or black ($E^+$/e), but not to the Agouti locus. ASIP genotypes probably did not affect coat color development in the Hanwoo or crossbred progeny. Our results suggest that the ASIP genotypes do not play key roles in coat color variation, but the MC1R genotypes do direct the phenotypes of Hanwoo, JBC, and their progeny.