• Title/Summary/Keyword: insecticidal protein

Search Result 73, Processing Time 0.03 seconds

Production of Toxin Protein by Recombinant Escherichia coli with a Thermally Inducible Expression System

  • Jong, Se-Han;Chang, Ho-Nam;Chang, Yong-Keun;Rhim, Seong-Lyul
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.451-455
    • /
    • 1996
  • Physiological studies on the expression of Bacillus thuringiensis subsp. tenebrionis (Btt) gene coding for insecticidal protein in recombinant Escherichia coli 537 were carried out to identify optimal culture condition. It was necessary to shift culture temperature from 30 to $42^{\circ}C$ to express the gene. Expression of the Btt toxin gene by recombinant E. coli 537 began within one hour after induction. Complex nitrogen sources increased production of the insecticidal protein. The total insecticidal protein was 0.5 g/I when using yeast extract as a complex nitrogen source. Soybean hydrolysate showed apparently the highest induction efficiency. After induction, the cellular content of the insecticidal protein was 5.4 times higher than it had been before induction. The optimal cultivation strategy was found to grow cells for 7hours at $30^{\circ}C$ and then 5-8 hours at $42^{\circ}C$. The optimal cultivation pH for the production of insecticidal protein was 6.5. The Btt toxin produced by the recombinant E. coli 537 was found to have the same level of potency against Colorado potato beetle as the original toxin.

  • PDF

Construction of Recombinant Xanthomonas campestris Strain Producing Insecticidal Protein of Bacillus thuringiensis

  • Shin, Byung-Sik;Koo, Bon-Tag;Choi, Soo-Keun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.285-289
    • /
    • 1994
  • An insecticidal crystal protein gene, cryIA(c), from Bacillus thuringiensis HD-73 was integrated into the chromosome of a xanthan-producing bacterium, Xanthomonas campestris XP92. The cryIA(c) gene expression cassette was constructed that placed the gene between the trc promoter and rrnB transcriptional terminator. The $lacl^q$ gene was also included to prevent the expression of cryIA(c) gene in X campestris cells. Southem blot analysis confirmed the integration of the cryIA(c) gene expression cassette in chromosome of X campestris XP92 transconjugant. Expression of the insecticidal crystal protein was confirmed by Western blot analysis and bioassay against the larvae of Hyphantria cunea (Lepidoptera: Arctiidae) and Plutella xylostella (Lepidoptera:Plutellidae).

  • PDF

Insecticidal Activity and Molecular Characteristics of Bacillus thuringiensis CAB530 Isolated from Anomala albopilosa (Rutelidae: Coleoptera) (청동풍뎅이에서 분리한 Bacillus thuringiensis CAB530 균주의 살충활성 및 분자학적 특성)

  • Beom, Jong-Il;Seo, Mi-Ja;You, Joo;Youn, Young-Nam;Yu, Yong-Man
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.166-176
    • /
    • 2011
  • Bacillus thuringiensis CAB530 was isolated from dead Anomata albopilosa (Rutelidae: Coleoptera) and soil of green tea field, and confirmed its insecticidal activities. CAB530 isolate showed a high insecticidal activity against the beet armyworm among the many lepidopteran insects that are difficult to control. $LC_{50}$ value of CAB530 isolate against the second larva of Spodoptera exigua was $1.49{times}10^4$ spore concentration (cfu/$m{\ell}$). SDS-PAGE result of insecticidal toxin protein of CAB530 isolate showed a band at 130 kDa that is similar pattern with B. thuringiensis subsp. kurstaki that took insecticidal activity against S. exigua. Otherwise, the crystal protein of the CAB530 isolate was conformed at 65 kDa level after 30 minute of incubation in S. exigua midgut juice. Six crystal genes (cry1Aa, cry1Ab, cry1C, cry1D, cry1F and cry1I) were identified by PCR. It different from genes of B. thuringiensis subsp. kurstaki. Crystal shape and pattern of toxin protein was similar with B. thuringiensis subsp. kurstaki, however, insecticidal activity and PCR result of CAB530 isolate was similar with B. thuringiensis subsp. aizawai.

Growth and Production of Insecticidal Crystal Proteins of Bacillus thuringiensis as Affected by Carbon Sources (Bacillus thuringiensis 생장과 살충성 결정단백질 생성에 대한 탄소원의 영향)

  • Kim, Moo-Key;Ahn, Byung-Koo
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.177-182
    • /
    • 1996
  • Effects of 14 carbohydrates supplied as carbon sources on cell growth and sporulation of, and the production of insecticidal crystal proteins by Bacillus thuringiensis strains were investigated in liquid cultures. Strains grew well in media containing any one of the 14 carbohydrates supplied, reaching maximum cell densities of $10^7{\sim}10^8\;cells/ml$ in 16.7 to 22 hours after inoculation depending on the strain. Spores first appeared in 16.7 to 24.7 hours after inoculation, and 80% sporulation was reached in 28 to 51.3 hours after inoculation depending on the strain. No change in pH of media was observed after cell multiplication. The production of total protein was highest when supplied with sucrose and was lowest with starch. More insecticidal crystal proteins were produced when supplied with glucose, lactose, maltose, or sucrose. The amount of insecticidal crystal proteins produced by the strains was proportional to that of the total protein. The relative amount of individual insecticidal crystal protein species produced by B.t. kurstaki and B.t. israelensis was not influenced by the carbohydrates supplied.

  • PDF

Transfer of Insecticidal Toxin Gene in Plants: 2. Subcloning of B. thuringiensis Insecticidal Protein Gene and Rapid Plantlet Regeneration from Nicotiana tabacum Protoplast and Callus (식물세포에 살충독소유전자의 전이연구: 2. B. thuringiensis 살충독소유전자의 Subcloning과 Nicotiana tabacum의 원형질체와 칼루스로부터 신속재생연구)

  • 이형환;조상현황성희김수영
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.289-297
    • /
    • 1991
  • The insecticidal protein gene in the pKL-20-1 clone derived from Bacillus thuringiensis serovar. kurstaki plasmid was subcloned in the plant shuttle vector, pGA643. The 7.3 kb fragment was cloned in the BglII and Hpal sites of pGA643 vector and expressed in E. coli S17-1, which produced insecticidal proteins killing Bombyx mori larvae. The clone was named pHL-20. The protoplast formation, calli induction and plantlet regeneration of Nicotiana tabacum was carried out. A tremendous number of mesophyll protoplasts of N. tabacum were formed, up to 7$\times$105 protoplast per ml, for 20 hours in darkness in the enzyme solution of 0.5% cellulase and 0.1% macerosin, pH 5.8. The viabilities of the protoplasts were maintained above 80% for 6 days in the media containing 2mg/1 of NAA and 1mg/1 of kinetin. Calli were induced from the protoplasts and leaves of the N. tabacum on MS medium containing 0.5mg/1 BAP. Under the culture conditions the protoplasts underwent repeated cell division into calli. Plantlets were regenerated from callus cultures derived from protoplast and leaves. Shoots were induced in a medium containing 1mg/1 of BAP.

  • PDF

Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Bacillus thuringiensis on Spodoptera litura

  • Song, Feifei;Lin, Yunfeng;Chen, Chen;Shao, Ensi;Guan, Xiong;Huang, Zhipeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1774-1780
    • /
    • 2016
  • Vegetative insecticidal proteins (Vips) are insecticidal proteins synthesized by Bacillus thuringiensis during the vegetative stage of growth. In this study, Vip3Aa protein, obtained by in vitro expression of the vip3Aa gene from B. thuringiensis WB5, displayed high insecticidal activity against Spodoptera litura aside from Spodoptera exigua and Helicoverpa armigera. Bioassay results showed that the toxicity of Vip3Aa protein against S. litura larvae statistically decreased along with the increase of the age of the larvae, with LC50 = 2.609 ng/cm2 for neonatal larvae, LC50 = 28.778 ng/cm2 for first instar larvae, LC50 = 70.460 ng/cm2 for second instar larvae, and LC50 = 200.627 ng/cm2 for third instar larvae. The accumulative mortality of 100% larvae appeared at 72 h for all instars of S. litura larvae, when feeding respectively with 83.22, 213.04, 341.40, and 613.20 ng/cm2 of Vip3Aa toxin to the neonatal and first to third instar larvae. The histopathological effects of Vip3Aa toxin on the midgut epithelial cells of S. litura larvae was also investigated. The TEM observations showed wide damage of the epithelial cell in the midgut of S. litura larvae fed with Vip3Aa toxin.

Insecticidal Toxin and Research Trends of Photorhabdus, Entomopathogenic Bacteria (곤충살충성 세균 Photorhabdus의 Insecticidal Toxin과 연구동향)

  • Jang, Eun-Kyung;Shin, Jae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • BT toxin is produced by a soil bacterium Bacillus thuringiensis and has long been used as a biological insecticide without any competition. Recently, Photorhabdus, a symbiotic bacterium from entomopathogenic nematodes, family Heterorhabditae, has been researched and discussed as alternatives to B. thuringiensis. Photorhabdus, which lives in the gut of entomopathogenic nematodes, is a highly virulent pathogen of a wide range of insect larvae. When an insect is infected by the nematodes, the bacteria are released into the cadaver, and produce a number of insecticidal toxins. The biological role of the different Photorhabdus toxins in the infection process is still unclear. Photorhabdus toxin complex (Tc) is highly secreted gut-active toxin and has been characterized as a potent three-component (A, B and C) insecticidal protein complex. These components are necessary for full oral activity against insect larvae. The Photorhabdus PirAB binary toxins exhibit a potent injectable activity for Galleria mellonella larvae, and have oral toxicity against mosquitoes and caterpillar pest Plutella xylostella. Other toxin, 'makes caterpillars floppy' (Mcf) showed injectable activity on caterpillars. Recombinant Mcf triggers apoptosis in both insect hemocytes and the midgut epithelium and carries a BH3 domain. In this review, the relationship between the Photorhabdus and the nematode is discussed and recent important insecticidal toxins from Photorhabdus are described.

Generation of Transgenic Plant (Nicotiana tabacum var. Petit Havana SR1) harboring Bacillus thuringiensis Insecticidal Crystal Protein Gene, cry II A (Bacillus thuringiensis 살충성 결정단백질 유전자(cry II A)의 형질전환 식물 제작)

  • 이정민;류종석;권무식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.5
    • /
    • pp.305-311
    • /
    • 1997
  • Bacillus thuringiensis, a gram-positive soil bacterium, is characterized by its ability to produce crystalline inclusions during sporulation. The crystal proteins exhibit a highly specific insecticidal activity. An insecticidal crystal protein (ICP), Cry II A, is specifically toxic to both lepidopteran and dipteran insects. In this study, tobacco plants transformed by the cry II A gene have been generated. The Cry II A crystal protein was purified from E. coli JM103 harboring cry II A gene by differential solubility. The activated Cry II A was prepared by tryptic digestion. The purified protoxin (70 kDa) and the activated toxin (50 kDa) were analyzed by SDS-PAGE. To generate the transgenic tobacco having cry II A gene, the cry II A gene was subcloned to a plant expression vector, pSRL2, having two CaMV 35S promoters. The recombinant plasmid was transformed into tobacco (N. tabacum var. Petit Havana SR1) by Agrobacterium-mediated leaf disc transformation. Through the regeneration, six putative transgenic tobacco plants were obtained and three transformants were confirmed by Southern blot analysis. It has been found that one plant had single copy of cry II A gene, another had two copies of the gene, and the third had a truncated gene. After the immunochemical confirmation of cry II A expression in plants, the transgenic tobacco plants will be used to study the genetics of future generation with the insecticidal crystal protein gene cry II A.

  • PDF

Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis (식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝)

  • 이형환;황성희;박유신
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.647-652
    • /
    • 1990
  • The production of delta-endotoxin crystal and the cloning of endotoxin protein gene in Bscillus thuringiensis subsp. kurstaki HD1 strain were studied. The strain produced bipyramidal crystals ($2.9\times 1.0 \mu m$) in their cells during sporulation. The B. thuringiensis contained about 10 plasmid DNA elements ranging from 2.1 to 80 kilobases. The 73 kb plasmid DNA, the 29 kb BamHI fragment and the 7.9 kb Pstl DNA fragment hybridized to the pHL probe. The 7.9 kb fragment was eluted and cloned in the PstI site of pBR322 vector and transformed into E. coli HB101, which produced insecticidal proteins killing Bornbyx mori larvae.

  • PDF