• Title/Summary/Keyword: insect resources

Search Result 326, Processing Time 0.026 seconds

Single Somatic Embryogenesis from Transformant with Proteinase II Gene in Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Kim, Se-Young;Rho, Yeong-Deok;Kim, Moo-Sung
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.205-210
    • /
    • 2003
  • Ginseng(Panax ginseng C.A. Meyer) is a perennial herbaceous plant which grows very slowly. It takes about 3 to 4 years from seeding to collecting the ripe seeds and the ginseng propagation is very difficult. and so, it is very difficult to breed ginseng plant. Ginseng tissue culture was started from at 1960, and ginseng commercial product by in vitro callus culture was saled, however upto now, regenerants were not planted to soil normally. Recently, plant genetic engineering to produce transgenic plants by introducing useful genes has been advanced greatly. In a present paper, transformation of ginseng plants was achieved by co-cultivation with Agrobacterium harboring the binary vector coding Proteinase-II gene, which confer resistant or tolerant to insect pests, The binary vector for transformation was constructed with disarmed Ti-plasmid and with double 35S promoter. The NPT II gene and introduced genes of the transgenic ginseng plants were successfully identified by the PCR. Especially the transgenic ginseng plants were regenerated using new techniques such as repetitive single somatic embryogenesis.

  • PDF

Molecular Cloning and Characterization of Chymotrypsin Inhibitor and Chitin-Binding Protein Homologs from the Bumblebee Bombus terrestris

  • Qiu, Yuling;Yoon, Hyung-Joo;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • The bumblebee Bombus terrestris is widely used in greenhouses to pollinate crops. Here, we report the molecular cloning and characterization of chymotrypsin inhibitor and chitin-binding protein homologs from B. terrestris. Two cDNAs encoding chymotrypsin inhibitor (Bt-CI) and chitin-binding protein (Bt-CBP) homologs were cloned from B. terrestris. Gene sequence analysis showed that Bt-CI gene consists of three exons encoding 75 amino acids, including a predicted 20-amino acid signal peptide, while Bt-CBP consists of two exons encoding 78 amino acids, including a predicted 26-amino acid signal peptide. The mature Bt-CI and Bt-CBP peptides contain ten and six conserved cysteine residues, respectively. Database searches using the deduced sequences of Bt-CI and Bt-CBP showed similarity to those from B. impatiens (96% peptide sequence identities). Bt-CI and Bt-CBP were expressed in both the venom gland and fat body of B. terrestris worker bees. The recombinant Bt-CI and Bt-CBP peptides were expressed in baculovirus-infected insect cells. Taken together, our findings describe the molecular characterization of Bt-CI and Bt-CBP from B. terrestris.

Distribution and Traditional Practice on Neem in the Rural Homesteads of Chittagong Coastal Plain of Bangladesh

  • Miah, Md. Danesh;Hossain, Mohammed Anwar;Muhammed, Nur;Sin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.524-531
    • /
    • 2006
  • Neem tree (Azadirachta indica), native to the Indian sub-continent, has been known since the ancient time for its medicinal and insect repellent properties. In recent years, Neem has attracted global attention due to its potential as a source of natural drugs and also environment-friendly pesticides. In the households. The distribution and traditional practice on Neem can be important to the agriculturist, ethno-pharmaceutical developers and to the rural development practitioners in Bangladesh. An exploratory survey on the distribution and traditional practice on Neem tree in the rural homesteads of Chittagong coastal plain, Bangladesh, was conducted over a period of three months from September 2002 to November 2002. It was found that maximum, 64% households used seedling as planting material having 40% maximum sources Within the major tree species present in the homesteads, Neem accounted for 12% among the total individuals. It was found that the availability of Neem trees was found maximum, 31%, in the homesteads of medium sized households. Maximum, 42% individuals of Neem were found within the DBH of 10.1 to 20 cm; and 37% within the 3.1 to 6 m height classes. Neem trees were found to be used maximum, 88% for furniture. The findings of the study will be of immense importance for the rural development practitioners and ethno pharmacological developers in Bangladesh.

Regional differences in winter activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum) from Korea

  • Kim, Sun-Sook;Choi, Yu-Seong;Yoo, Jeong-Chil
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Background: Hibernating bats exhibit ubiquitous winter activity in temperate zones, but there is considerable between- and within-species variety in their intensity and purpose. Bats may fly during winter for sustenance or travel to other hibernacula. This study compared inter-regional variation in the winter activity of the greater horseshoe bat (Rhinolophus ferrumequinum). We predicted that weather and hibernacula-environmental conditions would influence winter activity patterns. Results: Winter activity patterns differed between regions. In the Anseong area, we confirmed movement inside the hibernaculum, but in Hampyeong, we observed movement both inside and between hibernacula. The two regions differ by $4^{\circ}C$ in average winter temperatures. Anseong experiences 22 days during which average daily temperatures exceeded $5^{\circ}C$, whereas Hampyeong experienced 50 such days. During the hibernating period, bat body weight decreased by approximately 17-20% in both regions. Conclusions: Ambient temperatures and winter-roost environments appear to be behind regional differences in hibernating bat activity. As winter temperatures in Korea do not favor insect activity, feeding probability is low for bats. However, bats may need to access water. At Anseong, underground water flows inside the hibernaculum when the reservoir outside is frozen. At Hampyeong, the hibernaculum does not contain a water source, but the reservoir outside does not freeze during winter. In conclusion, water-source location is the most likely explanation for regional variation in the winter activity of hibernating bats.

Construction of a Novel Recombinant Baculovirus Producing Polyhedra with a Bacillus thuringiensis Cry1Ac Crystal Protein

  • Je, Yeon-Ho;Jin, Byung-Rae;Roh, Jong-Yul;Chang, Jin-Hee;Kang, Seok-Kwon
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.3
    • /
    • pp.145-153
    • /
    • 1999
  • We have now constructed a novel recombinant baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) producing polyhedra with Bacillus thuringiensis (Bt) CryIAc crystal protein. The recombinant polyhedra produced by the recombinant baculovirus, Btrus, in insect cells was characterized. The recombinant baculovirus has two independent transcription units in opposite orientations with two promoters, p10 or polyhedrin gene promoter each initiating transcription of either native polyhedrin or fusion protein with polyhedrin and Bt Cry1Ac crystal protein. Surprisingly, this recombinant baculovirus stably produced recombinant polyhedra which were nearly similar to those of wild-type AcNPV. The immunogold staining experiment showed that the recombinant polyhedra were assembled with polyhedrin and Bt Cry1Ac crystal protein, and contained virus particles. Insecticidal toxicity of recombinant polyhedra of Btrus to the fall webworm, Hyphantria cunea, was strikingly improved in comparison with the wild-type AcNPV.

  • PDF

Confirmation of Coleosporium solidaginis on Solidago virgaurea subsp. gigantea in Korea (울릉미역취에서 녹병균 Coleosporium solidaginis의 확인)

  • Shin, Hyeon-Dong;Kim, Joon-Young;Lee, Chong-Kyu;Lee, Sang-Hyun;Seo, Sang-Tae
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.353-358
    • /
    • 2018
  • Solidago virgaurea subsp. gigantea is native to Ulleung-do, island in East Sea, and cultivated as a vegetable in Korea. Rust fungus on this plant was first reported as Coleosporium asterum in 2014. Recent studies on Solidago-Coleosporium association mainly based on North American materials suggested that the Korean isolates of C. asterum on S. virgaurea subsp. gigantea reported in Korea might be placed in the C. solidaginis clade. Accordingly, to confirm this suggestion, three additional Korean samples were morphologically and molecularly studied and identified as C. solidaginis in current species concept. Three specimens on S. altissima (syn. S. canadensis) from China and Japan were previously determined to be phylogenetically differentiated from C. solidaginis, hinting at a cryptic species. Therefore, this is the first confirmed report on the presence of C. solidaginis on Solidago spp. in Asia.

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul;Choi, Jae-Young;Li, Ming-Sung;Jin, Byung-Rae;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.547-559
    • /
    • 2007
  • Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

Expression of Green Fluorescent Protein in Both Spodoptera frugiperda Cells and Bombyx mori Larvae by Ac-Bm Hybrid Virus

  • Jin, Byung-Rae;Yoon, Hyung-Joo;Yun, Eun-Young;Kang, Seok-Woo;Cho, Eun-Sook;Kang, Seok-Kwon
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 1998
  • We have expressed GFP in Sf9 and Bm5 cells or Bombyx mori larvae by using Ac-Bm hybrid virus capable of replicating in both Bm5 and Sf9 cells. Genomic DNA of Ac-Bm hybrid virus expressing ${\beta}$-galactosidase was cotransfected with baculovirus transfer vector containing GFP gene, pBacPAK-GFP in Sf9 cells. The Ac-Bm hybrid virus harboring GFP was named as Ac-Bm hybrid virus-GFP. The Ac-Bm hybrid virus-GFP-infected insect cells were easily selected by detecting the emission of GFP from each well of cell culture dish on the UV illuminator. GFP produced by Ac-Bm hybrid virus-GFP in Sf9 and Bm5 cells or B. mori larvae was confirmed by SDS-PAGE and Western blot analysis using GFP antibody. In addition, B. mori larvae infected with Ac-Bm hybrid virus-GFP was apparently appeared fluorescence from the whole body at S days postinoculation. The fluorescence of GFP from the hemolymph and fat body of B. mori larvae infected with Ac-Bm hybrid virus-GFP was also observed by fluorescence microscope. In conclusion, our results demonstrated that in baculovirus expression vector system, use of Ac-Bm hybrid virus have an additional advantage of expanded host range for producing recombinant proteins.

  • PDF

Improved Baculovirus Vectors Expressing Barnase Using Promoters from Cotesia plutellae Bracovirus

  • Choi, Jae Young;Kim, Yang-Su;Wang, Yong;Kang, Joong Nam;Roh, Jong Yul;Shim, Hee Jin;Woo, Soo-Dong;Jin, Byung Rae;Je, Yeon Ho
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • The goal of this study was to create a novel baculovirus expression system that does not require recombinant virus purification steps. Transfection of insect cells with transfer vectors containing barnase under control of the Cotesia plutellae bracovirus (CpBV) promoters ORF3004 or ORF3005 reduced cell growth. Co-transfection with bApGOZA DNA yielded no recombinant viruses and nonrecombinant backgrounds. To further investigate the detrimental effects of barnase on insect cells, two recombinant bacmids harboring the barnase gene under control of the CpBV promoters, namely bAcFast-3004ProBarnase and bAcFast-3005ProBarnase, were constructed. While no viral replication was observed when only the recombinant bacmids were transfected, recombinant viruses were generated when the bacmids were co-transfected with the transfer vector, pAcUWPolh, through substitution of the barnase gene with the native polyhedrin gene by homologous recombination. Moreover, no non-recombinant backgrounds were detected from unpurified recombinant stocks using PCR analysis. These results indicate that CpBV promoters can be used to improve baculovirus expression vectors by means of lethal gene expression under the control of these promoters.

Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Oxya chinensis sinuosa

  • Kim, In-Woo;Markkandan, Kesavan;Lee, Joon Ha;Subramaniyam, Sathiyamoorthy;Yoo, Seungil;Park, Junhyung;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1863-1870
    • /
    • 2016
  • Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.