• Title/Summary/Keyword: insect meal

Search Result 25, Processing Time 0.023 seconds

Nutrient digestibility in black soldier fly larva was greater than in adults for pigs and could be estimated using fiber

  • Jongkeon Kim;Kwanho Park;Sang Yun Ji;Beob Gyun Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.1002-1013
    • /
    • 2023
  • The objectives of the present study were to determine the nutrient digestibility of fish meal, defatted black soldier fly larvae (BSFL), and adult flies and to develop equations for estimating in vitro nutrient digestibility of BSFL for pigs. In vitro digestion procedures were employed to mimic the digestion and absorption of nutrients in the pig intestine. Correlation coefficients between chemical composition and in vitro nutrient digestibility of BSFL were calculated. In Exp. 1, in vitro ileal digestibility (IVID) of dry matter (DM) and crude protein (CP) and in vitro total tract digestibility (IVTTD) of DM and organic matter in defatted BSFL meal were less (p < 0.05) than those in fish meal but were greater (p < 0.05) than those in adult flies. In Exp. 2, CP concentrations in BSFL were negatively correlated with ether extract (r = -0.91) concentration but positively correlated with acid detergent fiber (ADF; r = 0.98) and chitin (r = 0.95) concentrations. ADF and chitin concentrations in BSFL were negatively correlated with IVID of DM (r = -0.98 and -0.88) and IVTTD of DM (r = -1.00 and -0.94) and organic matter (r = -0.99 and -0.98). Prediction equations for in vitro nutrient digestibility of BSFL were developed: IVID of CP (%) = -0.95 × ADF (% DM) + 95 (r2 = 0.75 and p = 0.058) and IVTTD of DM (%) = -2.09 × ADF + 113 (r2 = 0.99 and p < 0.001). The present in vitro experiments suggest that defatted BSFL meal was less digestible than fish meal but was more digestible than adult flies, and nutrient digestibility of BSFL can be predicted using ADF as an independent variable.

Growth Performance and Nutrient Composition in the White-spotted Flower Chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae) Fed Agricultural By-product, Soybean Curd Cake (비지박 첨가 먹이원 급여에 따른 흰점박이꽃무지 유충의 생육과 영양성분 변화)

  • Song, Myung-Ha;Han, Moon-Hee;Lee, Seokhyun;Kim, Eun-Sun;Park, Kwan-Ho;Kim, Won-Tae;Choi, Ji-Young
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1185-1190
    • /
    • 2017
  • Insects are gaining recognition as an alternative source of protein. As a result, more and more domestic farms have begun mass rearing of edible insects. In order to produce high quality insects, studies on the development of safe and nutritious feed sources are needed. Given the cost of rearing insects, agricultural and industrial by-products are good sources for feed. The efficient utilization of these by-products can help in reducing the cost of production and preventing environmental pollution. In the current study, Citrus unshiu peel (CP), soybean curd cake (SCC), soybean oil meal (SOM), and brewers dried grain (BDG) were investigated for their effects on larval growth and development of Protaetia brevitarsis. Interestingly, the feed with 10% SCC increased larval weight by 3.5 times. For the larval period, the group of 10% SCC was significantly shorter than the control. Furthermore, minerals such as Zn, Ca, K, Mg, Na, and P were recorded to be high in 10% SCC. A total of 17 amino acids were present in 10% SCC, of which tyrosine and arginine were predominant. The heavy metal contents were very small amounts or not detected in any of the investigated groups. These findings provided a scientific basis for the utilization of soybean curd cake as a nutritional feed source to promote larval growth and produce quality insects.

Developing Sequential Sampling Plans for Evaluating Maize Weevil and Indian Meal Moth Density in Rice Warehouse (쌀 저장창고에서 어리쌀바구미와 화랑곡나방 밀도 추정을 위한 축차추출 조사법 (Sequential sampling plans) 개발)

  • Nam, Young-Woo;Chun, Yong-Shik;Ryoo, Mun-Il
    • Korean journal of applied entomology
    • /
    • v.48 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • This paper presents sequential sampling plans for evaluating the pest density based on complete counts from probe in a rice storage warehouse. Both maize weevil and Indian meal moth population showed negative binomial dispersion patterns in brown rice storage. For cost-effective monitoring and action decision making system, sequential sampling plans by using the sequential probability ratio test (SPRT) were developed for the maize weevil and Indian meal moth in warehouses with 0.8 M/T storage bags. The action threshold for the two insect pests was estimated to 5 insects per kg, which was projected by a matrix model. The results show that, using SPRT methods, managers can make decisions using only 20 probe with a minimum risk of incorrect assessment.

Research trends and views for insect-proof food packaging technologies (해충유입 방지를 위한 방충포장기법의 연구 동향 및 전망)

  • Chang, Yoonjee;Na, Ja-hyun;Han, Jaejoon
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.2-11
    • /
    • 2017
  • Packaging is the last defensive barrier that protects food products from insect infestation during storage. However, though packaging films are hermetically sealed, insects can still be attracted by strong olfactory cues and penetrate through packaging materials, resulting in contamination. Insect contamination may cause consumers to be repulsed by contaminated food products. Especially, it is well known that stored-product insects cause critical problems in the cereal industry by inducing quantitative and qualitative damages to the grain products. The contaminations are caused by insects' metabolic byproducts and body parts, consequentially caused customer repulsion. Therefore, it is necessary to repel and control insects. However, management systems for storage insects in food industry have been inadequate for many years. Synthetic pesticides has been widely used, but pesticides may accumulate in foods, causing acute and chronic symptoms in consumers. For this reason, there is a growing need for the development of natural insecticides that can replace synthetic pesticides. Thus, various reports about anti-insect packaging materials and strategies to repel insects were introduced in this study. Furthermore, we suggested new strategies to develop an insect-repelling active packaging materials which could be applied in the food packaging industry.

Root Rot of Japanese Angelica Caused by Phytophthora cactorum in Nursery and Mycological Characteristics of the Isolates (두릅나무 묘목생산포의 역병 발생 및 분리균의 균학적 특성)

  • Lee, Sang-Hyun;Lee, Jae-Pil;Kim, Kyung-Hee;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.98-102
    • /
    • 2005
  • In 2003 to 2005, the root rot of Japanese angelica (Aralia elata) was surveyed in nursery beds of Korea, where incidence of the disease often reached up to 100%. Three isolates were obtained from the infected roots, and identified as Phytophthora cactorum on the basis of cultural, morphological characteristics and molecular analysis. The isolates were characterized by having markedly papillate and broadly ovoid deciduous sporangia. The optimum temperature for mycelium growth was at $25^{\circ}C$ on V8 juice agar. Pathogenicity of the isolates was confirmed by soil mixture inoculation. Approximately 900 bp of ITS rDNA was amplified from all 3 isolates and band pattern of restriction fragments observed by Alu I, Msp I, and Taq I digestion also supported the result of the morphological identification when compared with PhytID database.

Brewers' Dried Grain as a Feed Additive for the Korean Rhinoceros Beetle, Allomyrina dichotoma (사료첨가제로서 맥주박이 장수풍뎅이 유충의 생육에 미치는 영향)

  • Song, Myung-Ha;Lee, Heui-Sam;Park, Kwanho
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1501-1506
    • /
    • 2018
  • Edible insects have recently been increasingly promoted as a source of protein. As the number of farms rearing these insect increases, it is important to develop safe and nutritious feed sources to improve their commercial quality. The aim of the current study was to determine the effect of food by-products as feed supplements for the Korean rhinoceros beetle, Allomyrina dichotoma, which has been registered as a general food ingredient in Korea. We compared the effects of waste citrus peel, soybean curd cake, soybean oil meal, and brewers' dried grain on the growth of third instar larvae of A. dichotoma. Groups of larvae were fed with fermented sawdust and nine different combinations of the above by-products and the effects on their growth were measured until pupation. The highest survival rate was with feed supplemented with 10% brewers' dried grain (66.7%, p<0.05), and these larvae were also 26% heavier (p<0.05) than the control group that received no supplementation. In the 10% brewers' dried grain group, the larval period of third instar was shortened by almost 28 days (p<0.01) compared to the control group. Of all the groups, only that which was fed the brewers' dried grain supplement showed more than a 90% pupation rate (p<0.05). Therefore, brewers' dried grain may be useful as a source of feed for A. dichotoma.

Nutritional composition of various insects and potential uses as alternative protein sources in animal diets

  • Shah, Assar Ali;Totakul, Pajaree;Matra, Maharach;Cherdthong, Anusorn;Hanboonsong, Yupa;Wanapat, Metha
    • Animal Bioscience
    • /
    • v.35 no.2_spc
    • /
    • pp.317-331
    • /
    • 2022
  • The aim of the present investigation is to determine the nutritional composition of various insects and their potential uses as alternative protein sources in animal diets. The feeding industry requires production systems that use accessible resources, such as feed resources, and concentrates on the potential impacts on production yield and nutritional quality. Invertebrate insects, such as black soldier flies, grasshoppers, mealworms, housefly larvae, and crickets, have been used as human food and as feed for nonruminants and aqua culture while for ruminants their use has been limited. Insects can be mass-produced, participating in a circular economy that minimizes or eliminates food- and feed-waste through bioconversion. Although the model for formula-scale production of insects as feed for domestic animals has been explored for a number of years, significant production and transformation to being a conventional protein resource remains to be deeply investigated. This review will focus on the nutritional composition of various insects and their potential use as alternative protein sources, as well as their potential use to promote and support sustainable animal production. Furthermore, nutritional compositions, such as high protein, lauric acid omega 6, and omega 3, and bioactive compounds, such as chitin, are of great potential use for animal feeding.

Molecular Cloning, Gene Structure, Expression, and Enzyme Activity of a Serine Protease from Water Scorpion, Laccotrephes japonensis (Hemiptera: Nepidae)

  • Park, Kwan Ho;Choi, Young Cheol;Nam, Seong Hee;Hwang, Jae Sam;Nho, Si Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.2
    • /
    • pp.187-193
    • /
    • 2012
  • Serine proteases are major insect enzymes involved in the digestion of dietary proteins and in the process of blood meal digestion. In this study, cDNA was constructed using the whole body of Laccotrephes japonensis. The flanking sequences of the 5- and 3- end of this gene were characterized by RACE-PCR. Sequence analysis showed that this gene contained a 963-bp ORF encoding 320 amino acids. The deduced amino acid sequence showed 62% identity with the Creontiades dilutus serine protease, 58% with the Lygus lineolaris trypsin precursor, and 54% with the Triatoma infestans salivary trypsin. To assess the expression of the L. japonensis serine protease (JGsp), the JGsp gene was cloned into a baculovirus transfer vector, pBac-1, and expressed in Sf9 cells (Spodoptera frugiperda). SDS-PAGE and western blot analysis have shown that the JGsp recombinant protein was a monomer with a molecular weight of about 32 kDa. Recombinant JGsp has shown activity in the protease enzyme assay using gelatin as a substrate.

Effects of processed tobacco leaves for the development and emergence of cigarette beetle (담배 가공 원료엽의 궐련벌레 생육과 우화에 미치는 영향)

  • Chae, Soon-Yong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was conducted to determine the effects of processed tobacco leaves on the development, adult emergence and body weight of the cigarette beetle, Lasioderma serricorne Fabricius) (Coleoptera: Anobiidae) is serious insect pest of tobacco leaves and cigarette during storage. Developmental time, adult emergence rate and adult weight of the cigarette beetle, were evaluated on the cured tobacco and burley tobacco leaves at $30{\pm}1^{\circ}C$ with $70{\pm}5$ % RH under 12L:12D. The developmental time on all of the flue-cured tobacco leaves was about 61 days, but in the only CD3W and CD4TR grade burley tobacco, the developmental times ranged from 70 days to 74 days. Among the flue-cured tobacco leaves, the highest beetle emergence rate was 123 % on the CD3L grade, and the lowest was on the AB4OR grade. Adult body weights of the cigarette beetle reared on flue-cured tobacco were about 2.11~2.46 mg, and on the only CD3W and CD4TR grade burley tobacco were about 1.86~1.96 mg. Among the flue-cured tobacco leaves, the highest adult body weight(2.46 mg) of cigarette beetle was observed on the B1O grade flue-cured tobacco, whereas the lowest adult weight(2.11 mg) was observed on the CD4L grade flue-cured tobacco. The adult weight of cigarette beetle reared on whole meal was 2.04mg.

Control Indian meal moth Plodia interpunctella by gas treatment

  • Han, Gyung Deok;Kwon, Hyeok;Jin, Hyun Jung;Kum, Ho Jung;Kim, Bo Hwan;Kim, Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.45-45
    • /
    • 2017
  • The Indian meal moth, Plodia interpunctella, is one of the most important pests of stored food in the food processing industry worldwide. To control the Indian meal moth, methyl bromide, phosphine, high carbon dioxide, sulfuryl fluoride and plant essential oil fumigation have been considered. However, these treatments have disadvantages. For example, depleting the ozone layer, showing resistance in insect, low control efficacy or need high cost for treatment. Chlorine dioxide ($ClO_2$) is strong disinfectant and insecticide. The gas caused a malfunction in enzymes. The oxidative stress induced by $ClO_2$ gas treatment damaged to a physiological system and all life stages of P. interpunctella. The gaseous $ClO_2$ is a convincing alternative to methyl bromide for controlling P. interpunctella. The gaseous $ClO_2$ was generated by a chlorine dioxide generator (PurgoFarm Co., Ltd., Hwasung, Korea). It generated highly pure $ClO_2$ gas and the gas blown out through a vent into a test chamber. Gas entry to the chamber was automatically controlled and monitored by a PortaSene II gas leak detector (Analytical Technology, Collegeville, PA, USA). The properly prepared eggs, larvae, pupae, and adults of P. interpunctella were used in this experiment. Data were analyzed using SAS 9.4. Percentage data were statistically analyzed after arcsine-root transformation. Analysis of variance was performed using general linear model, and means were separated by the least significant difference test at P < 0.05. Fumigation is an effective management technique for controlling all stages of P. interpunctella. We found that $ClO_2$ gas treatment directly effects on egg, larvae, pupae and adults of P. interpunctella. The gas treatment with proper concentration for over a day achieved 100 % mortality in all stages of P. interpunctella and short time treatment or low concentration gas treatment results showed that the egg hatchability, pupation rate, and adult emergency rate were lowered compare with untreated control. Also, abnormal pupae or adult rate were increased. Gaseous $ClO_2$ treatment induced insecticidal reactive oxygen species (ROS), and it resulted in fatal oxidative stress in P. interpunctella. Taken together, these results showed that exposure proper concentration and time of the gas control all stages of P. interpunctella by inducing fatal oxidative stress. Further studies will be required to apply the gas treatment under real-world condition and to understanding physiological reaction in P. interpunctella caused by oxidative stress.

  • PDF