• 제목/요약/키워드: input power

검색결과 5,908건 처리시간 0.034초

부품 내장 공정을 이용한 5G용 내장형 능동소자에 관한 연구 (The Study on the Embedded Active Device for Ka-Band using the Component Embedding Process)

  • 정재웅;박세훈;유종인
    • 마이크로전자및패키징학회지
    • /
    • 제28권3호
    • /
    • pp.1-7
    • /
    • 2021
  • 본 논문에서는 Bare-die Chip 형태의 Drive amplifier를 Ajinomoto Build-up Film (ABF)와 FR-4로 구성된 PCB에 내장함으로써 28 GHz 대역 모듈에서 적용될 수 있는 내장형 능동소자 모듈을 구현하였다. 내장형 모듈에 사용된 유전체 ABF는 유전율 3.2, 유전손실 0.016의 특성을 가지고 있으며, Cavity가 형성되어 Drive amplifier가 내장되는 FR4는 유전율 3.5, 유전손실 0.02의 특성을 가진다. 제안된 내장형 Drive amplifier는 총 2가지 구조로 공정하였으며 측정을 통해 각각의 S-Parameter특성을 확인하였다. 공정을 진행한 2가지 구조는 Bare-die Chip의 패드가 위를 향하는 Face-up 내장 구조와 Bare-die Chip의 패드가 아래를 향하는 Face-down내장 구조이다. 구현한 내장형 모듈은 Taconic 사의 TLY-5A(유전율 2.17, 유전손실 0.0002)를 이용한 테스트 보드에 실장 하여 측정을 진행하였다. Face-down 구조로 내장한 모듈은 Face-up 구조에 비해 Bare-die chip의 RF signal패드에서부터 형성된 패턴까지의 배선 길이가 짧아 이득 성능이 좋을 것이라 예상하였지만, Bare-die chip에 위치한 Ground가 Through via를 통해 접지되는 만큼 Drive amplifier에 Ground가 확보되지 않아 발진이 발생한다는 것을 확인하였다. 반면 Bare-die chip의 G round가 부착되는 PCB의 패턴에 직접적으로 접지되는 Face-up 구조는 25 GHz에서부터 30 GHz까지 약 10 dB 이상의 안정적인 이득 특성을 냈으며 목표주파수 대역인 28 GHz에서의 이득은 12.32 dB이다. Face-up 구조로 내장한 모듈의 출력 특성은 신호 발생기와 신호분석기를 사용하여 측정하였다. 신호 발생기의 입력전력(Pin)을 -10 dBm에서 20 dBm까지 인가하여 측정하였을 때, 구현한 내장형 모듈의 이득압축점(P1dB)는 20.38 dB으로 특성을 확인할 수 있었다. 측정을 통해 본 논문에서 사용한 Drive amplifier와 같은 Bare-die chip을 PCB에 내장할 때 Ground 접지 방식에 따라 발진이 개선된다는 것을 검증하였으며, 이를 통해 Chip Face-up 구조로 Drive amplifier를 내장한 모듈은 밀리미터파 대역의 통신 모듈에 충분히 적용될 수 있을 것이라고 판단된다.

Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑 (Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network)

  • 공성현;백원경;정형섭
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1723-1735
    • /
    • 2022
  • 산사태는 가장 널리 퍼진 자연재해 중 하나로 인명 및 재산피해 뿐만 아니라 범 국가적 차원의 피해를 유발할 수 있기 때문에 효과적인 예측 및 예방이 필수적이다. 높은 정확도를 갖는 산사태 취약성도를 제작하려는 연구는 꾸준히 진행되고 있으며 다양한 모델이 산사태 취약성 분석에 적용되어 왔다. 빈도비 모델, logistic regression 모델, ensembles 모델, 인공신경망 등의 모델과 같이 픽셀기반 머신러닝 모델들이 주로 적용되어 왔고 최근 연구에서는 커널기반의 합성곱신경망 기법이 효과적이라는 사실과 함께 입력자료의 공간적 특성이 산사태 취약성 매핑의 정확도에 중요한 영향을 미친다는 사실이 알려졌다. 이러한 이유로 본 연구에서는 픽셀기반 deep neural network (DNN) 모델과 패치기반 convolutional neural network (CNN) 모델을 이용하여 산사태 취약성을 분석하는 것을 목적으로 한다. 연구지역은 산사태 발생 빈도가 높고 피해가 큰 인제, 강릉, 평창을 포함한 강원도 지역으로 설정하였고, 산사태 관련인자로는 경사도, 곡률, 하천강도지수, 지형습윤지수, 지형위치 지수, 임상경급, 임상영급, 암상, 토지이용, 유효토심, 토양모재, 선구조 밀도, 단층 밀도, 정규식생지수, 정규수분지수의 15개 데이터를 이용하였다. 데이터 전처리 과정을 통해 산사태관련인자를 공간데이터베이스로 구축하였으며 DNN, CNN 모델을 이용하여 산사태 취약성도를 작성하였다. 정량적인 지표를 통해 모델과 산사태 취약성도에 대한 검증을 진행하였으며 검증결과 패치기반의 CNN 모델에서 픽셀기반의 DNN 모델에 비해 3.4% 향상된 성능을 보였다. 본 연구의 결과는 산사태를 예측하는데 사용될 수 있고 토지 이용 정책 및 산사태 관리에 관한 정책 수립에 있어 기초자료 역할을 할 수 있을 것으로 기대된다.

다목적 활용을 위한 화천댐 용수공급능력 평가 연구 (Estimating the water supply capacity of Hwacheon reservoir for multi-purpose utilization)

  • 이은경;이선미;지정원;이재응;정순찬
    • 한국수자원학회논문집
    • /
    • 제55권6호
    • /
    • pp.437-446
    • /
    • 2022
  • 2020년 4월, 한강수계의 유효저수용량이 비교적 큰 발전용댐인 화천댐을 용수공급에 활용하기 위한 협약이 체결되었고 현재는 시범운영 중이다. 화천댐은 시범운영을 통해 우리나라 발전용댐 중 최초로 하류부 용수공급을 위해 지속적으로 일정한 유량을 공급하고 있다. 본 연구에서는 화천댐의 규모와 유입량 실적자료를 활용하여 화천댐의 용수공급량을 산정하고 용수공급능력을 평가하였다. 월단위 95% 이수안전도와 연단위 95% 이수안전도를 충족하는 용수공급량을 산정하기 위한 모의 모형과 화천댐 용수공급능력을 산정하기 위한 최적화 모형을 개발하였다. 또한, 모형의 입력자료로 사용되는 유입량 자료는 임남댐의 영향을 고려하여 두 가지 방법으로 보정하였다. 두 가지 보정 유입량을 활용하여 화천댐 용수공급량을 산정한 결과는 다음과 같다. 월단위 95% 이수안전도를 만족하는 용수공급량은 26.86 m3/sec, 24.12 m3/sec, 연단위 95% 이수안전도를 만족하는 용수공급량은 23.88 m3/sec, 22.22 m3/sec이다. 용수공급 실패 없이 화천댐에서 연간 최대 공급할 수 있는 용수공급량은 776.8 MCM이며 과거 월별 발전방류패턴을 고려하여 방류하는 경우에는 연간 704.3 MCM을 공급할 수 있다. 화천댐의 용수공급능력을 활용한 체계적인 운영이 수행된다면 한강수계 갈수기 용수공급 안정화에 기여할 것으로 기대된다.

도시 가로수 관리 품셈 개선에 관한 연구 (A Study on Improvement Methods of Cost Estimation in Order for the Proper Management of Street Trees)

  • 도윤택;한봉호;박석철
    • 한국조경학회지
    • /
    • 제50권4호
    • /
    • pp.20-36
    • /
    • 2022
  • 본 연구는 가로수 관리의 합리적인 표준품셈 항목 및 적정 단가 설정을 통한 고품질 가로수 관리의 기초자료 제공을 목적으로 하였다. 현재 가로수 관리항목은 가로수 전정을 제외하고, 일반 조경수 품셈을 가로수 관리 품셈으로 활용하고 있다. 또한 한국전력공사에서는 표준전기품셈의 가지치기 항목을 적용하여 표준품셈 대비 강전정의 경우 평균 51%, 약전정의 경우 평균 39% 낮은 단가로 사업을 수행하고 있다. 이는 가로수 관리 품질을 유지하거나 향상시킬 수 없는 한계로 판단되었으며, 가로수 관리의 적정 단가 기준이 필요함을 뜻한다. 가로수 관리 품셈을 개선하기 위해 현업에서 투입되는 비용을 검토할 필요가 있었다. 하지만 국내의 조경 분야 실적공사비에 대한 데이터의 부재로 미국 RSMeans Building Construction Cost Data(RSMeans)의 세부항목을 검토하였다. RSMeans란 1942년부터 누적된 미국의 실적기반 적산방식으로 주로 연방교통부와 각 주정부의 도로국을 중심으로 공사비를 산정하는 데이터베이스이다. RSMeans는 지속적인 신기술 도입과 노동 및 재료비용의 계속된 변경을 반영하기 위해 매해 건설제품과 방법을 찾고 수량화하며, 생산성 비율을 조정하고 있다. 본 연구에서는 국내 조경 관리 방법과 큰 차이가 없는 RSMeans의 세부항목과 현행 인건비 등을 적용하여 실적공사비를 산출하였다. 적용 결과 표준품셈은 실적공사비와 비교하면 가로수 전지의 강전정의 경우 107%로의 양호한 비율이었지만, 약전정은 59%로 과소 설계가 되어 있었다. 또한, 관목 전정은 82%, 제초는 92%, 교목 시비는 87%, 방풍벽 설치는 91% 수준으로 과소 설계되어 있었다. 살수차 관수와 약제 살포는 각각 118%와 124%의 비율로 실적공사비와 비교하면 과대 설계된 부분도 확인하였다. 과소평가된 항목들은 가로수의 특수성으로 도로 안전통제 등으로 인건비 및 장비의 투입비 상승이 주요 원인으로 판단되었다. 향후 표준품셈의 조경 유지 관리항목에 일반 조경수뿐만 아니라 가로수에 관한 항목 추가가 필요하다.

로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식 (Accelerometer-based Gesture Recognition for Robot Interface)

  • 장민수;조용석;김재홍;손주찬
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.53-69
    • /
    • 2011
  • 로봇 자체 또는 로봇에 탑재된 콘텐츠와의 상호작용을 위해 일반적으로 영상 또는 음성 인식 기술이 사용된다. 그러나 영상 음성인식 기술은 아직까지 기술 및 환경 측면에서 해결해야 할 어려움이 존재하며, 실적용을 위해서는 사용자의 협조가 필요한 경우가 많다. 이로 인해 로봇과의 상호작용은 터치스크린 인터페이스를 중심으로 개발되고 있다. 향후 로봇 서비스의 확대 및 다양화를 위해서는 이들 영상 음성 중심의 기존 기술 외에 상호보완적으로 활용이 가능한 인터페이스 기술의 개발이 필요하다. 본 논문에서는 로봇 인터페이스 활용을 위한 가속도 센서 기반의 제스처 인식 기술의 개발에 대해 소개한다. 본 논문에서는 비교적 어려운 문제인 26개의 영문 알파벳 인식을 기준으로 성능을 평가하고 개발된 기술이 로봇에 적용된 사례를 제시하였다. 향후 가속도 센서가 포함된 다양한 장치들이 개발되고 이들이 로봇의 인터페이스로 사용될 때 현재 터치스크린 중심으로 된 로봇의 인터페이스 및 콘텐츠가 다양한 형태로 확장이 가능할 것으로 기대한다.

비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로 (Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront)

  • 김승수;김종우
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.221-241
    • /
    • 2018
  • 최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.

뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구 (A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network)

  • 양윤석;이현준;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.25-38
    • /
    • 2019
  • 정보화 시대의 넘쳐나는 콘텐츠들 속에서 사용자의 관심과 요구에 맞는 양질의 정보를 선별해내는 과정은 세대를 거듭할수록 더욱 중요해지고 있다. 정보의 홍수 속에서 사용자의 정보 요구를 단순한 문자열로 인식하지 않고, 의미적으로 파악하여 검색결과에 사용자 의도를 더 정확하게 반영하고자 하는 노력이 이루어지고 있다. 구글이나 마이크로소프트와 같은 대형 IT 기업들도 시멘틱 기술을 기반으로 사용자에게 만족도와 편의성을 제공하는 검색엔진 및 지식기반기술의 개발에 집중하고 있다. 특히 금융 분야는 끊임없이 방대한 새로운 정보가 발생하며 초기의 정보일수록 큰 가치를 지녀 텍스트 데이터 분석과 관련된 연구의 효용성과 발전 가능성이 기대되는 분야 중 하나이다. 따라서, 본 연구는 주식 관련 정보검색의 시멘틱 성능을 향상시키기 위해 주식 개별종목을 대상으로 뉴럴 텐서 네트워크를 활용한 지식 개체명 추출과 이에 대한 성능평가를 시도하고자 한다. 뉴럴 텐서 네트워크 관련 기존 주요 연구들이 추론을 통해 지식 개체명들 사이의 관계 탐색을 주로 목표로 하였다면, 본 연구는 주식 개별종목과 관련이 있는 지식 개체명 자체의 추출을 주목적으로 한다. 기존 관련 연구의 문제점들을 해결하고 모형의 실효성과 현실성을 높이기 위한 다양한 데이터 처리 방법이 모형설계 과정에서 적용되며, 객관적인 성능 평가를 위한 실증 분석 결과와 분석 내용을 제시한다. 2017년 5월 30일부터 2018년 5월 21일 사이에 발생한 전문가 리포트를 대상으로 실증 분석을 진행한 결과, 제시된 모형을 통해 추출된 개체명들은 개별종목이 이름을 약 69% 정확도로 예측하였다. 이러한 결과는 본 연구에서 제시하는 모형의 활용 가능성을 보여주고 있으며, 후속 연구와 모형 개선을 통한 성과의 제고가 가능하다는 것을 의미한다. 마지막으로 종목명 예측 테스트를 통해 본 연구에서 제시한 학습 방법이 새로운 텍스트 정보를 의미적으로 접근하여 관련주식 종목과 매칭시키는 목적으로 사용될 수 있는 가능성을 확인하였다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.