• Title/Summary/Keyword: input impedance matching

Search Result 155, Processing Time 0.024 seconds

Design of a Modified Half Wavelength Loaded Line Antenna Controllable Resonant Frequency and Input Impedance (공진 주파수와 입력 임피던스를 조절할 수 있는 변형된 반파장 로디드 라인 안테나 설계)

  • Jung Woo-Jae;Jung Byungwoon;Kang Gi-Cho;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.973-981
    • /
    • 2005
  • A modified half wavelength loaded line antenna is designed and implemented for mobile terminal applications. The antenna is constructed with a radiating element of half wavelength loaded line structure, dielectric substrate, feeding post and two shorting posts on the experimental PCB. The shorting posts are located at each side of the radiating element and lumped inductance elements are on between each shorting post and ground of PCB. By controlling value of inductors, one can adjust resonant frequency and input impedance respectively. Within inductance value of 12 nH, the antenna can have wide operating range of $1,470\~2,660\;MHz$ and good impedance matching. The measured peak gains are between -0.45 dBi and 2.03 dBi for the operating band.

Design of a Distributed Mixer Using Dual-Gate MESFET's (Dual-Gate MESFET를 이용한 분포형 주파수 혼합기의 설계)

  • Oh, Yang-Hyun;An, Jeong-Sig;Kim, Han-Suk;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.15-23
    • /
    • 1998
  • In this paper, distributed mixer is studied at microwave frequency. The circuit of distributed mixer composed of gate 1,2, drain transmission lines, matching circuits in input and output terminal, DGFET's. For impedance matching of input and output port at higher frequency, image impedance concept is introduced. In distributed mixer, a DGFET's impedances are absorbed by artificial transmission line, this type of mixer can get a very broadband characteristics compared to that of current systems. A RF/LO signal is applied to each gate input port, and are excited the drain transmission line through transcondutance of the DGFET's. The output signals from each drain port of DGFET's added in same phases. We designed and frabricated the distributed mixer, and a conversion gain, noise figure, bandwidth, LO/RF isolation of the mixer are shown through computer simulation and experimentation.

  • PDF

A New Design-for-Testability Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 새로운 구조의 검사용 설계회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.68-77
    • /
    • 2006
  • This paper presents a new Design-for-Testability (DfT) circuit for 4.5-5.5GHz low noise amplifiers (LNAs). The DfT circuit measures gain, noise figure, input impedance, input return loss, and output signal-to-noise ratio for the LNA without external expensive equipment. The DfT circuit is designed using 0.18m SiGe technology. The circuit utilizes input impedance matching and DC output voltage measurements. The technique is simple and inexpensive.

Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System (요요 진동시스템을 이용한 가동물체형 파력 발전 시스템의 기계-전기 통합해석 모델링 및 성능 해석)

  • Sim, Kyuho;Park, Jisu;Jang, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

New Design Method of Wireless Power Transfer System Using Loop Antennas (루프 안테나를 이용한 무선 전력 전송 시스템의 새로운 설계법)

  • Kim, Hee-Seung;Won, Do-Hyun;Lim, Jae-Bong;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.36-45
    • /
    • 2010
  • In this paper, we propose a new design method to design a wireless power transfer system using loop antennas for consumer electronics. This method can simply design a wireless power transfer system only using measurements of coupling coefficients and simple equations of equivalent circuit model about loop antennas without complicated electromagnetic analysis. Using the proposed design method, a wireless power transfer system with a pair of loop antennas operating at the frequency of 13.56 MHz, which have a dimension of $50{\times}50\;cm^2$, is designed and implemented. The input return loss, coupling coefficient, efficiency, and input impedance variation with respect to a distance between loop antennas were measured. The proposed design method provides good agreements between measured and predicted results. Also, the wireless power transfer system with impedance matching circuits designed by the proposed design method shows two times higher efficiency characteristics than the case with the general $50\;{\Omega}$ impedance matching circuits. Therefore, we verified that our design method could be an effective tool to design a wireless power transfer system.

Dual band microstrip patch antenna for RFID application of 900MHz and 2.45GHz (900MHz, 2.45GHz RFID 이중 대역 마이크로스트립 패치 안테나)

  • Jang, Se-Wook;Kazemipour, Alireza;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.432-435
    • /
    • 2007
  • In this paper, a dual band microstrip patch Antenna is designed for RFID Application. The antenna shows a good performance at the frequencies, 900MHz and 2.45GHz for the radiation characteristics and input impedance matching, as well. The reflection factor is lower than -25dB and a good directivity higher than 5dB is achieved for both frequency.

  • PDF

A Transformer-Matched Millimeter-Wave CMOS Power Amplifier

  • Park, Seungwon;Jeon, Sanggeun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.687-694
    • /
    • 2016
  • A differential power amplifier operating at millimeter-wave frequencies is demonstrated using a 65-nm CMOS technology. All of the input, output, and inter-stage network are implemented by transformers only, enabling impedance matching with low loss and a wide bandwidth. The millimeter-wave power amplifier exhibits measured small-signal gain exceeding 12.6 dB over a 3-dB bandwidth from 45 to 56 GHz. The output power and PAE are 13 dBm and 11.7%, respectively at 50 GHz.

Design of Ultra-broadband Microwave Amplifier Using Immittance Loci of Constant Gain (일정 이득 이미턴스 궤적을 이용한 초광대역 마이크로파 증폭기 설계)

  • 구경헌;이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1344-1350
    • /
    • 1990
  • A design method of ultra-broadband microwave amplifier is presented. A lossy network is represented as the combination of a serial impedance component and a parallel admittance component, and the realizable ranges of the gain and the reflection coefficients are derived with the components connected to the input, output or interstage network. The matching network has been designed by using the serial and parallel immittance loci which have the constant gain or reflection coefficients within the realizable ranges. Using the proposed method, deisgn examples of ultra-broadband amplifiers operating from dc to 12GHz frequency range are presented.

  • PDF

On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices (압전 진동 에너지 수확 장치의 에너지 변환 효율에 대한 고찰)

  • Kim, Jae Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

Design of Ka-band Colpitts Oscillators with a Coplanar Waveguide Configuration (CPW 구조의 Ka-band Colpitts Oscillator 설계)

  • Ko, Jung-Min;Kim, Jun-Il;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1125-1128
    • /
    • 2003
  • This paper presents the design method of a Colpitts type oscillator with coplanar waveguide(CPW) structures in the range of Ka-band frequency for transmitter and receiver modules. Series short stubs of CPW patterns provide inductances and capacitances in the range of Ka-band which can be expressed as a CLC-$\pi$ equivalent circuit. The experimentation has employed ro4003 substrates as a CPW substrate which has a dielectric constant of 3.38 and a signal and ground space of 100um. A method of momentum simulation for the CPW patterns has performed with an ADS software tool of Hewlett-Packard Corp. Inductance and capacitance circuits of a Colpitts oscillator was interconnected to a MESFET with CPW bend structures of including the input and output impedance matching circuits of the active transistor. Circuit parameters for impedance matching were determined through the network conversion to the equivalent length of CPW transmission lines by using T-network 1 $\pi$-network conversion circuit. A Colpitts oscillator was fabricated on the substrate of a area of 8.5mm x 17.4mm with a MESFET of Fujitsu FMM5704X and CPW series short stubs. The design suggested the possibility of realizing oscillators on a planar surface for the wireless system of tansmitter and receiver modules in the frequency range of 30GHz

  • PDF