The input estimation method estimates maneuvering input acceleration in order to track a maneuvering target. In this paper, the optimal input estimator is derived by choosing the MAP hypothesis among maneuvering input transition hypotheses under the assumption that a maneuvering input acceleration is a semi-Markov process. The optimal input estimation method cannot be realized because the optimal filter should consider every maneuver onset time hypothesis from filter starting time to current time which increase rapidly. Hence the suboptimal filter using a sliding window is proposed. Since the proposed method can consider all hypotheses of input transitions inside the window, it is general enough to include Bogler's input estimation method. Simulation results show, however, that we can obtain a good performance even when the filter considering just one input transition in the window is used. (author). 9 refs., 3 figs., 1 tab.
When teaching English in elementary schools was introduced in Korea in 1997, the theoretical basis was the critical period hypothesis (CPH). The object of this study was to test whether the Korean situation satisfies the conditions for the CPH such as the amount of English input and needs. As a test for this, English input and needs were compared in Korea, the U.S.A. and Singapore. The items for English input were on a continuum of primary to secondary sources and the items for English needs were on a continuum of immediate to future needs. The 0-5 scale was used. The result showed that the total means of English input were 4.87, 4.62, and 1.05 for children in the U.S.A., Singapore and Korea respectively. The total means of English needs were 4.32, 3.81, and 1.52 for children in the U.S.A., Singapore and Korea respectively. These figures show that Korean children's levels of both input and needs were from “almost none” to “little,” while those of children in the U.S.A. and Singapore were from “much” to “very much.” This shows that teaching English in Korea presently is far from meeting the conditions that are expected by the CPH. As an alternative to explain what happens cognitively to Korean children, this paper suggests the automatization and proceduralization processes.
This study focused on examining the effects of Objective, Subjective variables on the household economic well-being. Data were collected from 254 financial managers in Seoul. City. Results show that the Causal model supported hypothesis. Almost of the hypothesis were supported and Perceived adequacy of resources variable was mediated between Input variables and Satisfaction with financial situation variable. The present study implicated that this model apply to family resource management research.
The use of confidence measures for word/utterance verification has become art essential component of any speech input application. Confidence measures have applications to a number of problems such as rejection of incorrect hypotheses, speaker adaptation, or adaptive modification of the hypothesis score during search in continuous speech recognition. In this paper, we present a new utterance verification method using vowel string. Using subword HMMs of VCCV unit, we create anti-models which include vowel string in hypothesis words. The experiment results show that the utterance verification rate of the proposed method is about 79.5%.
이 연구는 게임 안의 상황을 통제하는 조작 방법 중 실생활에서의 행위 경험과 유사한 조작도구를 사용하는 것이 몰입을 더욱 증가시킬 것이라는 가설을 세우고, 범용 조작도구와 전용 조작도구의 비교 실험을 통해 결과를 밝히고자 하였다. 이에 따라 게임 조작행위와 몰입간의 관계를 파악하여 연구의 과정을 도출하고 가설을 증명하였다. 연구결과 대부분의 플레이어들은 점수 결과에 상관없이 전용 조작도구를 사용하였을 때, 게임에 빠져들어 있었음을 느꼈고 만족도가 높았으며, 전용 조작도구의 사용이 몰입의 증가에 전체적으로 긍정적인 영향을 미쳤다. 대부분의 플레이어들이 도전, 주의집중, 즐거움, 현전 측면에서 전용조작도구가 훨씬 우세하다는 응답 결과를 나타냈고, 조작도구의 숙련과 통제는 두 조작도구가 비슷한 수준에서 선호되고 있는데, 전용 조작도구에서 실험 초반 호기심과 도전감을 강하게 나타냈다. 게임의 조작행위를 통해 몰입을 증가시키기 위해서는 현전감이 높고, 익숙해지기 쉬운 조작법과 정확한 조작이 가능한 조작 도구의 활용이 필요하며 이는 게임의 재미와 몰입을 더욱 증가시킨다는 결론에 이른다.
The many target-detection methods that use forward-looking infrared (FUR) images can deal with large targets measuring $70{\times}40$ pixels, utilizing their shape features. However, detection small targets is difficult because they are more obscure and there are many target-like objects. Therefore, few studies have examined how to detect small targets consisting of fewer than $30{\times}10$ pixels. This paper presents a small target detection method using clutter rejection with stochastic hypothesis testing for FLIR imagery. The proposed algorithm consists of two stages; detection and clutter rejection. In the detection stage, the mean of the input FLIR image is first removed and then the image is segmented using Otsu's method. A closing operation is also applied during the detection stage in order to merge any single targets detected separately. Then, the residual of the clutters is eliminated using statistical hypothesis testing based on the t-test. Several FLIR images are used to prove the performance of the proposed algorithm. The experimental results show that the proposed algorithm accurately detects small targets (Jess than $30{\times}10$ pixels) with a low false alarm rate compared to the center-surround difference method using the receiver operating characteristics (ROC) curve.
In this paper, we investigate an input dimension reduction method using continuous word vector in deep neural network language model. In the proposed method, continuous word vectors were generated by using Google's Word2Vec from a large training corpus to satisfy distributional hypothesis. 1-of-${\left|V\right|}$ coding discrete word vectors were replaced with their corresponding continuous word vectors. In our implementation, the input dimension was successfully reduced from 20,000 to 600 when a tri-gram language model is used with a vocabulary of 20,000 words. The total amount of time in training was reduced from 30 days to 14 days for Wall Street Journal training corpus (corpus length: 37M words).
본 연구는 대학에서 사이버교육에 영향을 미치는 요인을 분석하고자 실시되었다. 먼저 사이버교육의 개념과 그 특성을 고찰하고 사이버교육의 평가준거들에 대한 선행연구들을 분석하여 본 연구에 적합한 교육효과 관련 변인들을 선정하였다. 연구 모형은 체제론에 입각한 투입-과정-산출 모형을 적용하여 투입변인은 교수, 학생, 학습 환경이고, 과정변인은 교육내용, 상호작용, 강의참여이며, 산출변인은 교육효과성과 교육만족도로 하였다. 분석은 투입-과정-산출과정에서 관련 변인들이 어떤 관계가 있으며, 실제 사이버교육에서 어느 정도 영향을 미치는지를 분석하였다. 이를 분석하기 위해서 사이버강의에 참여하고 있는 190명의 학생들을 대상으로 실증적인 연구를 하였다. 주요 연구결과에 따른 결론을 보면 다음과 같다. 첫째 학생들이 사이버교육에 참여한 시간이 많거나 성적이 높을수록 사이버교육 효과에도 긍정적으로 인식한다. 둘째, 사이버교육이 잘 이루어지기 위해서는 처음에는 교수의 역할이 중요하다. 셋째, 사이버교육의 효과를 높이기 위해서는 사이버교육의 교육내용과 학생들의 강의참여가 중요하다.
점점 더 복잡해지고 다양해지는 무기체계와 급격하게 변화하는 전장정보에 따라서, 인공지능을 사용한 전장 상황 분석 연구의 필요성이 대두되고 있다. 본 논문에서는 전장 상황을 분석하여 현재 상황에 적합한 가설을 추천해주는 분석결과 추천 학습모델의 학습 및 설계 방안을 제안한다. 학습 모델은 두 가설을 비교하여 결정되는 선호 여부를 레이블 데이터로 활용하여, 어떠한 가설이 현재 전장상황을 잘 분석하고 있는지 학습한다. 또한 후처리 랭킹 알고리즘을 통하여 각각의 가설에 대한 종합점수를 부여하고, 점수가 높은 상위 가설들을 지휘관에게 추천할 수 있음을 확인한다.
The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.