• 제목/요약/키워드: input estimation

검색결과 1,822건 처리시간 0.023초

Robust Signal Transition Density Estimation by Considering Reconvergent Path (재수렴성 경로를 고려한 견실한 신호 전이 밀도 예측)

  • Kim, Dong-Ho;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • 제9A권1호
    • /
    • pp.75-82
    • /
    • 2002
  • A robust signal transition density propagation method for a zero delay model is presented to obtain the signal transition density for estimating the power consumption. The power estimation for the zero delay model is a proper criteria for the lower boundary of power consumption. Since the input characteristics are generally unknown at design stage, robust estimation for wide range input characteristics is very important for the power consumption. In this paper, a conventional transition estimation method will be explored. And this exploration will be analyzed with the input/output signal transition behavior and used to propose the robust signal transition density propagation for the power estimation. In order to apply to practical circuits, the reconvergent path, which is crucial to affect the exactness of the power estimation, will be studied and an algorithm to take the reconvergent path into consideration will be presented. In experiment, the proposed methodology shows better robustness, comparable accuracy and elapsed time compared to the conventional methods.

Efficient Blind Estimation of Block Interleaver Parameters (효율적인 블록 인터리버 파라미터 블라인드 추정 기법)

  • Jeong, Jin-Woo;Choi, Sung-Hwan;Yoon, Dong-Weon;Park, Cheol-Sun;Yoon, Sang-Bom
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제37권5C호
    • /
    • pp.384-392
    • /
    • 2012
  • Recently, much research on blind estimation of the interleaver parameters has been performed by using Gauss-Jordan elimination to find the linearity of the block channel code. When using Gauss-Jordan elimination, the input data to be calculated needs to run as long as the square multiple of the number of the interleaver period. Thus, it has a limit in estimating the interleaver parameters with insufficient input data. In this paper, we introduce and analyze an estimation algorithm which can estimate interleaver parameters by using only 15 percent of the input data length required in the above algorithm. The shorter length of input data to be calculated makes it possible to estimate the interleaver parameters even when limited data is received. In addition, a 80 percent reduction in the number of the interleaver period candidates increases the efficiency of analysis. It is also feasible to estimate both the type and size of the interleaver and the type of channel coding.

An Efficient Feature Point Detection for Interactive Pen-Input Display Applications (인터액티브 펜-입력 디스플레이 애플리케이션을 위한 효과적인 특징점 추출법)

  • Kim Dae-Hyun;Kim Myoung-Jun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제32권11_12호
    • /
    • pp.705-716
    • /
    • 2005
  • There exist many feature point detection algorithms that developed in pattern recognition research . However, interactive applications for the pen-input displays such as Tablet PCs and LCD tablets have set different goals; reliable segmentation for different drawing styles and real-time on-the-fly fieature point defection. This paper presents a curvature estimation method crucial for segmenting freeHand pen input. It considers only local shape descriptors, thus, peforming a novel curvature estimation on-the-fly while drawing on a pen-input display This has been used for pen marking recognition to build a 3D sketch-based modeling application.

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제26권1호
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

A New Approach for Built-in Self-Test of 4.5 to 5.5 GHz Low-Noise Amplifiers

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • ETRI Journal
    • /
    • 제28권3호
    • /
    • pp.355-363
    • /
    • 2006
  • This paper presents a low-cost RF parameter estimation technique using a new RF built-in self-test (BIST) circuit and efficient DC measurement for 4.5 to 5.5 GHz low noise amplifiers (LNAs). The BIST circuit measures gain, noise figure, input impedance, and input return loss for an LNA. The BIST circuit is designed using $0.18\;{\mu}m$ SiGe technology. The test technique utilizes input impedance matching and output DC voltage measurements. The technique is simple and inexpensive.

  • PDF

Damage Estimation Method for Monopile Support Structure of Offshore Wind Turbine (모노파일 형식 해상풍력발전기 지지구조물의 손상추정기법)

  • Kim, Sang-Ryul;Lee, Jong-Won;Kim, Bong-Ki;Lee, Jun-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제22권7호
    • /
    • pp.667-675
    • /
    • 2012
  • A damage estimation method for support structure of offshore wind turbine using modal parameters is presented for effective structural health monitoring. Natural frequencies and mode shapes for a support structure with monopile of an offshore wind turbine were calculated considering soil condition and added mass. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. Natural frequencies and mode shapes for 10 prospective damage cases were input to the trained neural network for damage estimation. The identified damage locations and severities agreed reasonably well with the accurate damages. Multi-damage cases could also be successfully estimated. Enhancement of estimation result using another parameters as input to neural network will be carried out by further study. Proposed method could be applied to other type of support structure of offshore wind turbine for structural health monitoring.

Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method (자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정)

  • Bang, Keuk-Hee;Kim, Nak-Wan;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제14권9호
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

An Efficient Channel Estimation Method in MIMO-OFDM Systems (MIMO-OFDM 시스템에서 효율적인 채널 추정 방식)

  • Jeon, Hyoung-Goo;Kim, Jun-Sig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제19권10호
    • /
    • pp.2275-2284
    • /
    • 2015
  • In this paper, the Walsh coded orthogonal training signals for 4 × 4 multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems are designed and the channel estimation equations are derived as a closed form, taking account of the inter training signal interference problems caused by the multi-path delayed signals. The performances of the proposed channel estimation method are analyzed and compared with the conventional methods[9,14] by using computer simulation. The simulation results show that the proposed methods has better performances, compared with the conventional methods[9,14]. As a result, the proposed method can be used for MIMO-OFDM systems with null sub-carriers.

Adaptive Channel Estimation Techniques for FDD Massive MIMO Systems (FDD Massive MIMO 시스템에서의 적응 채널 추정 기법)

  • Chung, Jinjoo;Han, Yonghee;Lee, Jungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제40권7호
    • /
    • pp.1239-1247
    • /
    • 2015
  • In frequency-division duplex (FDD) massive multiple-input multiple-output (MIMO) system, the computational complexity of downlink channel estimation is proportional to the number of antennas at a base station. Therefore, effective channel estimation techniques may have to be studied. In this paper, novel channel estimation algorithms using adaptive techniques such as Kalman and least mean square (LMS) filters are proposed in a channel model with temporal and spatial correlation.

Channel estimation and detection with space-time transmission scheme in colocated multiple-input and multiple-output system

  • Pratibha Rani;Arti M.K.;Pradeep Kumar Dimri
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.952-962
    • /
    • 2023
  • In this study, a space-time transmission scheme is proposed to tackle the limitations of channel estimation with orthogonal pilot information in colocated multiple-input multiple-output systems with several transmitting and receiving antennas. Channel information is obtained using orthogonal pilots. Channel estimation introduces pilot heads required to estimate a channel. This leads to bandwidth insufficiency. As a result, trade-offs exist between the number of pilots required to estimate a channel versus spectral efficiency. The detection of data symbols is performed using the maximum likelihood decoding method as it provides a consistent approach to parameter estimation problems. The moment-generating function of the instantaneous signal-to-noise ratio is used to drive an approximate expression of the symbol error rate for the proposed scheme. Furthermore, the order of diversity is less by one than the number of receiver antennas used in the proposed scheme. The effect of the length of a pilot sequence on the proposed scheme's performance is also investigated.