• Title/Summary/Keyword: input earthquake ground motions

Search Result 112, Processing Time 0.031 seconds

Evaluation of Liquefaction Potential for Marine Silty Sand Deposits during Earthquake (서해안 사질토지반의 지진시 액상화 예측)

  • 이희명;정두영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 1994
  • Liquefaction characteristics of the reclaimed marine sand deposits is studied by means of the dynamic response analysis and the cyclic triaxial compression test. 1) From the result of the dynamic response analysis. it was found that the amplification of ground surface maximum acceleration varied with input earthquake motions and soil data, and earthquake coefficients were proposed to be applicable in evaluating liquefaction potential by simplified prediction methods. 2) For upper and soft sand deposits with small N-value, liquefaction strengths estimated by Seed and Idriss's simplified method were lower than those by the cyclic triaxial test while those by Iwasaki & Tatsuoka's or Vs-method were not lower. 3) Simplified methods were inclined to overestimate liquefaction potential in comparison with the dynamic response analysis and the cyclic triaxial compression test Allowable depths of liquefaction(safety factor 1) were estimated to be 7-14m for 0.1 -0.2g of input maximum acceleration.

  • PDF

Hydrodynamic pressures acting on the walls of rectangular fluid containers

  • Dogangun, Adem;Livaoglu, Ramazan
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.203-214
    • /
    • 2004
  • The dynamic response characteristics of a rectangular fluid container are investigated by using finite element method. The fluid is assumed to be linear-elastic, inviscid and compressible. A displacement-based fluid finite element was employed to allow for the effects of the fluid. A typical rectangular fluid container, which is used in recent studies, is considered for the numerical analysis. The North-South component of El Centro Earthquake records is used as input ground acceleration. Rigid and flexible fluid containers solutions are obtained for the chosen sample tank. Hydrodynamic pressures and sloshing motions are determined using Lagrangian fluid finite element. The results obtained from this study are compared with the results obtained by boundary-finite element method (BEM-FEM) and requirements of Eurocode-8. Based on the numerical analysis, some conclusions and discussions on the design considerations for rectangular fluid containers are presented.

Investigation on damage development of AP1000 nuclear power plant in strong ground motions with numerical simulation

  • Chen, Wanruo;Zhang, Yongshan;Wang, Dayang;Wu, Chengqing
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1669-1680
    • /
    • 2019
  • Seismic safety is considered to be one of the key design objectives of AP1000 nuclear power plant (NPP) in strong earthquakes. Dynamic behavior, damage development and aggravation effect are studied in this study for the three main components of AP1000 NPP, namely reinforced concrete shield building (RCSB), steel vessel containment (SVC) and reinforced concrete auxiliary building (RCAB). Characteristics including nonlinear concrete tension and compressive constitutions with plastic damage are employed to establish the numerical model, which is further validated by existing studies. The author investigates three earthquakes and eight input levels with the maximum magnitude of 2.4 g and the results show that the concrete material of both RCSB and RCAB have suffered serious damage in intense earthquakes. Considering RCAB in the whole NPP, significant damage aggravation effect can be detected, which is mainly concentrated at the upper intersection between RCSB and RCAB. SVC and reinforcing bar demonstrate excellent seismic performance with no obvious damage.

Seismic Analysis for Performance Assessment of Precast Segmental PSC Bridge Columns (프리캐스트 세그먼트 PSC 교각의 성능평가를 위한 지진해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.15-27
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns. For the analysis of reinforced concrete structures, a computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. To represent the interaction between tendon and concrete of a prestressed concrete member, a bonded or unbonded tendon element based on the finite element method is used. A joint element is modified to predict the inelastic behaviors of segmental joints. The solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic behavior throughout the input ground motions for numerical examples.

Soil-structure interaction effect on active control of multi-story buildings under earthquake loads

  • Chen, Genda;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.517-532
    • /
    • 2000
  • A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.

Exploring the effects of tuned mass dampers on the seismic performance of structures with nonlinear base isolation systems

  • Hessabi, Reza Mirza;Mercan, Oya;Ozturk, Baki
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.285-296
    • /
    • 2017
  • Base isolation is a quite practical control strategy for enhancing the response of structural systems induced by strong ground motions. Due to the dynamic effects of base isolation systems, reduction in the interstory drifts of the superstructure is often achieved at the expense of high base displacement level, which may lead to instability of the structure or non-practical designs for the base isolators. To reduce the base displacement, several hybrid structural control strategies have been studied over the past decades. This study investigates a particular strategy that employs Tuned Mass Dampers (TMDs) for improving the performance of base-isolated structures and unlike previous studies, specifically focuses on the effectiveness of this hybrid control strategy in structures that are equipped with nonlinear base isolation systems. To consider the nonlinearities of base isolation systems, a Bouc-Wen model is selected and nonlinear dynamic OpenSees models are used to perform several time-history simulations in time and frequency domains. Through these numerical simulations, the effects of several parameters such as the fundamental period of the structure, dynamic properties of the TMD and isolation systems and properties of the input ground motion on the behaviour of TMD-structure-base isolation systems are examined. The results of this study provide a better insight into the performance of linear shear-story structures with nonlinear base isolators and show that there are many scenarios in which TMDs can still improve the performance of these systems.

Development of ensemble machine learning models for evaluating seismic demands of steel moment frames

  • Nguyen, Hoang D.;Kim, JunHee;Shin, Myoungsu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.49-63
    • /
    • 2022
  • This study aims to develop ensemble machine learning (ML) models for estimating the peak floor acceleration and maximum top drift of steel moment frames. For this purpose, random forest, adaptive boosting, gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) models were considered. A total of 621 steel moment frames were analyzed under 240 ground motions using OpenSees software to generate the dataset for ML models. From the results, the GBRT and XGBoost models exhibited the highest performance for predicting peak floor acceleration and maximum top drift, respectively. The significance of each input variable on the prediction was examined using the best-performing models and Shapley additive explanations approach (SHAP). It turned out that the peak ground acceleration had the most significant impact on the peak floor acceleration prediction. Meanwhile, the spectral accelerations at 1 and 2 s had the most considerable influence on the maximum top drift prediction. Finally, a graphical user interface module was created that places a pioneering step for the application of ML to estimate the seismic demands of building structures in practical design.

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

Development of Fragility Curves for Seismic Stability Evaluation of Cut-slopes (지진에 대한 안전성 평가를 위한 깎기비탈면의 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.29-41
    • /
    • 2017
  • There are uncertainties about the seismic load caused by seismic waves, which cannot be predicted due to the characteristics of the earthquake occurrence. Therefore, it is necessary to consider these uncertainties by probabilistic analysis. In this paper, procedures to develop a fragility curve that is a representative method to evaluate the safety of a structure by stochastic analysis were proposed for cut slopes. Fragility curve that considers uncertainties of soil shear strength parameters was prepared by Monte Carlo Simulation using pseudo static analysis. The fragility curve considering the uncertainty of the input ground motion was developed by performing time-history seismic analysis using selected 30 real ground input motions and the Newmark type displacement evaluation analysis. Fragility curves are represented as the cumulative probability distribution function with lognormal distribution by using the maximum likelihood estimation method.

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.