• Title/Summary/Keyword: inorganic salt

Search Result 264, Processing Time 0.03 seconds

Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향)

  • Lee, Gun Dae;Jin, Youngeup;Park, Seong Soo;Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.655-662
    • /
    • 2017
  • Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, $K_3PO_4$, and $Na_3PO_4$, on the photocatalytic reaction were examined and the role of $K^+$, $Na^+$, $Cl^-$ and $PO_4{^{3-}}$ ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reaction rate, as compared to the cations. Under the present experimental conditions, $PO_4{^{3-}}$ revealed a significant inhibitory effect on the degradation rate whereas $Cl^-$ enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.

Studies on the Yeasts for the Brewing of Soy sauce(5) -Nutritional requirements of Saccharomyces rouxii T-9 (1) Influence of addition of nitrogen sources and inorganic salts- (간장 발효에 관여하는 효모에 관한 연구 (제5보) -Saccharomyces rouxii T-9의 영양요구성(1) 질소원 및 무기염류의 영향에 대하여-)

  • Lee, Taik-Soo;Lee, Suk-Kun
    • Applied Biological Chemistry
    • /
    • v.14 no.1
    • /
    • pp.99-102
    • /
    • 1971
  • These experiment were conducted to study the effects of various nitrogen sources and inorganic salts upon the growth of Saccharomyces rouxii T-9, and the results obtained were as follows: 1) The strain showed the most rapid growth in the case of 2.5 to 5.0% addition of peptone as an organic nitrogen source, and 1.0% addition of $(NH_4)_2HPO_4$ as an inorganic nitrogen source respectively to the media containing no NaCl. 2) Its growth was the most rapid in the case of 1.5% addition of yeast extracts as an organic nitrogen sources, and 5% addition of urea as an inorganic nitrogen source respectively to the media containing 20% of NaCl. 3) Its growth was the most rapid in the case of 1% addition of $NaNO_3$ as an inorganic salt to the media containing no NaCl, while to the media containing 20% or 26% of NaCl its growth was more rapid in the case of 5% addition of $NaNO_3$ than 1% addition. 4) Its growth was more rapid in the case of 0.5% addition of $MgSO_4\;and\;CaCl_2$ respectively to the media containing 20% of NaCl than to the media containing no NaCl, and was rapid in the case of 1% addition of $MgCl_2$ to the media containing 26% of NaCl.

  • PDF

Inorganic and Organic Solute Pattern of Costal Plants, Korea (해안 식물의 무기 및 유기용질 양상)

  • Choi, Sung-Chul;Bae, Jung-Jin;Choo, Yeon-Sik
    • The Korean Journal of Ecology
    • /
    • v.27 no.6 s.122
    • /
    • pp.355-361
    • /
    • 2004
  • In order to elucidate the ecophysiological characteristics of coastal plants, we collected them on salt marsh and sand dune, and analyzed inorganic ($Na^+,\;K^+,\;Mg^{2+},\;Ca^{2+}$) and organic solutes (soluble carbohydrate, glycine betaine). Chenopodiaceous plant species (Atriplex gmelini, Salicornia europaea, Salsola collina, Suaeda glauca, Suaeda japonica) showed a tendency to accumulate inorganic ions such as $Na^+\;and\;Cl^-$ instead of $K^+$. However, Chenopodium serotinum which lives in ruderal habitat contained more $K^+$ and less $Na^+$ than the other Chenopodiaceous plants. Most Chenopodiaceous plant species maintained very low level of soluble $Ca^{2+}$ and relatively low concentration of carbohydrates and showed high concentration of glycine betaine which is among the most effective known compatible solutes in the leaves of plant under drought and saline conditions. On the other hand, plant species which belong to Gramineae (Ishaemum anthephoroides, Phragmites communis, Zoysia sinica) and Cyperaceae (Carex kobomugi, Carex pumila) absorbed $K^+$ selectively and excluded $Na^+\;and\;Cl^-$ effectively regardless of habitat conditions, and they accumulated more soluble carbohydrate as osmoticum than Chenopodiaceous plants. These results suggested that physiological characteristics such as high storage capacity for inorganic ions (especially alkali cations, chloride) and the accumulation of glycine betaine in chenopodiaceous plants and $K^+$-preponderance, an efficient regulation of ionic uptake (exclusion of $Na^+\;and\;Cl^-$) and the accumulation of soluble carbohydrate in monocotyledonous plants enable them to grow dry and saline habitats.

Comparision of Cation-Anion Balance in Leaves on the Stalk Positions of Young Tobacco Plant (담배식물(植物)의 엽서별(葉序別) 이온균형(均衡) 비교(比較))

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.223-229
    • /
    • 1986
  • These studies were investigated ionic balance of leaves from different stalk positions of tobacco plant (cv. NC82) grown on pots supplied with nitrate salts solution in the phytotrone. The results of studies are summerized as follows: 1. In comparision with the leaves along the stalk positions, lower position contained higher proportion of total cation and total anion including organic acid, but their concentration lessened gradually at the upper stalk. The ratio in amounts of inorganic cations and anions in leaf laminae depended on their stalk positon, being more than three times in the fifth, but becoming about 1.3 in the tenth. 2. Inorganic cations in the laminae were mostly $K^+$, $Ca^{{+}{+}}$, and $Mg^{{+}{+}}$, comprising about 80% of total with the first two regardless of their stalk positions. Among these two ions $Ca^{{+}{+}}$ tended to become higher at lower stalks, while $K^+$ was higher in younger and became lower when leaves got older and/or more number of leaves were emerged. 3. Total cations were balanced with inorganic and organic acid anions. Composition of inorganic and organic anions were different along stalk positions, ionic balance was governed by organic acid anions dominantly in older leaves, but by inorganic anions in the younger leaves. 4. The discrepancy in the balance between total cations and anions was more pronounced in the older leaves containing higher amount of cations and organic acids. It was suggested that discrepancy was due to precipitation of oxalate as Ca-salt which was not dissolved in the methylation solution of measurement employed.

  • PDF

Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation (양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절)

  • Lee, Eun Kyung;Cho, Kanghee;Kim, Sang Kyum;Lim, Jong Sung;Kim, Jong-Nam
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.

Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes - (명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -)

  • Choo, Yeon-Sik;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.397-406
    • /
    • 2000
  • In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

  • PDF

Total Nitrogen Distribution and Seasonal Changes in Inorganic Nitrogen at a Pinus koraiensis Stand in Kwangju-gun, Kyǒnggi-do, Korea (경기도(京畿道) 광주지방(廣州地方)의 잣나무임분(林分)에 있어서 전질소(全窒素)의 분포(分布)와 무기태(無機態) 질소(窒素)의 계절적(季節的) 변화(變化))

  • Shin, Joon Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.69 no.1
    • /
    • pp.56-68
    • /
    • 1985
  • This study was conducted (1) to measure the nitrogen content of various parts of trees in a 24-year-old Pinus koraiensis plantation, providing a harvest method with the least impact on the self-serving mechanisms in the nitrogen status of the ecosystem and (2) to examine the seasonal changes in inorganic nitrogen (ammonium salt and nitrate, separately) at various soil depths and to study the self-serving mechanisms for nitrogen at the ecosystem, providing an appropriate method and season for the application of nitrogen fertilizers. The results obtained in this study were as follows; 1) Of the total nitrogen content of the total tree biomass (except for roots), nearly 61.5% was distributed in the needles, 20% in the branches, 5.5% in the stem bark, and 13% in the stem wood. Therefore, the harvest method of removing only wood parts for pulpwood production has little impact on the self-serving mechanisms of the site's nitrogen status. 2) Inorganic nitrogen concentrations decreased with increasing soil depths. The seasonal average concentration of inorganic nitrogen was highest in early spring and decreased in the following descending order; autumn, tollowed by mid-summer, and early summer. This pattern resulted from the fact that the loss of nitrate was greatly influenced by environmental factors. Thus, it was suggested that an application of active nitrogen fertilizer would be appropriate in spring.

  • PDF

Extraction of β-glucosidase from Bagasse Fermented by Mixed Culture under Solid State Fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • Various parameters such as solvent selection, concentration, solid/liquid ratio, soaking time, temperature, stationary, shaking conditions, and repeated extractions were investigated in order to determine the optimum extraction conditions of ${\beta}$-glucosidase from bagasse fermented by mixed culture of Aspergillus niger NRC 7A and Aspergillus oryzae NRRL 447. Among various solvents tested, non ionic detergents gave the best results than the inorganic or organic salt solutions and distilled water. The optimum conditions for extraction of ${\beta}$-glucosidase were 30 min soaking time at $40^{\circ}C$ under shaking condition at 150 rpm, with solid/liquid ratio 1:15 (w/v), which yielded $2882.74{\pm}95.52U/g$ fermented culture (g fc) of enzyme activity. With repeated washes under the above optimum conditions, the results showed that enzyme extracted in the $1^{st}$ and $2^{nd}$ washes represents about 90% of the total activity.

Cultural Characteristics for the Enhanced Mycelial Growth of Ramaria botrytis

  • Lee, Tae-Hee;Han, Yeong-Hwan
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.12-14
    • /
    • 2005
  • The culture conditions for the enhanced mycelial growth of Ramaria botrytis was investigated. The optimal temperature and pH for the mycelial growth were $24^{\circ}C$ and 5.0, respectively. It was shown that starch was best of several carbon sources in Czapek-Dox medium as a minimal medium for the enhanced mycelial growth. Organic nitrogen sources were better than inorganic ones for mycelial growth. The appropriate vitamin and mineral salt were biotin and FeCl3, respectively. When this strain was cultured with $FeCl_3$ for 30 days, 19.23 g/l of dry mycelium of R. botrytis was obtained.