• Title/Summary/Keyword: inorganic nutrients

Search Result 391, Processing Time 0.022 seconds

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area (서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성)

  • Son, Juwon;Shin, Hong-Ryeol;Mo, Ahra;Son, Seung-Kyu;Moon, Jai-Woon;Kim, Kyeong-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.143-156
    • /
    • 2015
  • In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.

The Physico-chemical Characteristics in the Garorim Bay, Korea (가로림만의 이화학적 수질의 시.공간적 특성)

  • Nam, Hyun-Jun;Heo, Seung;Park, Seung-Yun;Hwang, Un-Ki;Park, Jong-Soo;Lee, Hae-Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.101-114
    • /
    • 2012
  • The physico-chemical characteristics including water temperature, salinity, dissolved oxygen(DO), chemical oxygen demand (COD), chlorophyll-a(Chl. a), suspended particulate matter(SPM) and dissolved inorganic nutrients were investigated in the Garolim Bay, Yellow Sea, Korea in 2010 carried out six times per year at 11 fixed stations by Korea Fisheries Research & Development Institute. The water temperature, salinity, COD, dissolved inorganic nutrients, Chl. a and SPM showed significant difference between surface and bottom water but the other parameters didn't. There were not significant difference between stations. The water temperature showed typical change patterns of the temperate seawater. The annual average of salinity showed more than 31 so that there could not have occurred low saline water. The average of DO from June to August showed over than 3mg/L which showed higher than the below standard value of the hypoxic (oxygen-deficient) water. The average of Chl. a varied $1.68{\mu}g/L$ at surface, $2.38{\mu}g/L$ at bottom layer in June and $1.68{\mu}g/L$ at surface, $1.57{\mu}g/L$ at bottom layer at August. The dissolved inorganic nutrients showed high concentration in February and low concentration in August due to the limitation of the freshwater input in summer and phytoplankton used to the dissolved inorganic nutrients. The ratio of DIN/DIP showed 30.52 at surface and 37.89 at bottom layer in June which was higher than other month. The SPM was 44.15mg/L at bottom layer in February which was the highest value in this study due to the northwest monsoon. Because of the actively water change in the open sea without inflow of freshwater from land in Garolom Bay, there were not occurred low saline water and hypoxic water. thus, this Bay showed good water quality and required to be conserved continuously as important costal area for fisheries.

Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803

  • Kim, Hyun-Woo;Park, Seongjun;Rittmann, Bruce E.
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.347-355
    • /
    • 2015
  • The growth kinetics of phototrophic microorganisms can be controlled by the light irradiance, the concentration of an inorganic nutrient, or both. A multi-component kinetic model is proposed and tested in novel batch experiments that allow the kinetic parameters for each factor to be estimated independently. For the cyanobacterium Synechocystis sp. PCC6803, the estimated parameters are maximum specific growth rate $({\mu}_{max})=2.8/d$, half-maximum-rate light irradiance $(K_L)=11W/m^2$, half-inhibition-rate light irradiance $(K_{L,I})=39W/m^2$, and half-maximum-rate concentration for inorganic carbon $(K_{S,Ci})=0.5mgC/L$, half-maximum-rate concentration for inorganic nitrogen $(K_{S,Ni})=1.4mgN/L$, and half-maximum-rate concentration for inorganic phosphorus $(K_{S,Pi})=0.06mgP/L$. Compared to other phototrophs having ${\mu}max$ estimates, PCC6803 is a fast-growing r-strategist relying on reaction rate. Its half-maximum-rate and half-inhibition rate values identify the ranges of light irradiance and nutrient concentrations that PCC6803 needs to achieve a high specific growth rate to be a sustainable bioenergy source. To gain the advantages of its high maximum specific growth rate, PCC6803 needs to have moderate light illumination ($7-62W/m^2$ for ${\mu}_{syn}{\geq}1/d$) and relatively high nutrient concentrations: $N_i{\geq}2.3 mgN/L$, $P_i{\geq}0.1mgP/L$, and $C_i{\geq}1.0mgC/L$.

Equipment Development for Inorganic-Compound Concentration Measurement in a Hydroponic Culture Solution (수경배양액 무기성분농도 측정장치 개발)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Hong, Seung-Gil;Lee, Jae-Su;Baek, Jeong-Hyun;Park, Jong-Taek;Lee, Seung-Kee
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.319-326
    • /
    • 2020
  • BACKGROUND: Measurement equipment was developed for inorganic nutrient concentration inside the hydroponic culture medium with several macro- and micro compositions, and applied for measuring the compositions of conventional medium. METHODS AND RESULTS: Before the equipment development, sonicator and heater were utilized to control temperature around of the module mixing with color reagents and target samples among the inorganic compositions. The measurement module and multi-sampler were also manufactured based on the COMS (Complementary Metal-Oxide Semiconductor) and installed inside the measurement equipment. Concentration of standard solution, value measured by the equipment, standard deviation or measured average value were used for estimating the accuracy and average recall of the equipment. Yamazaki solutions with EC of 0.5, 1.5, and 2.5 dS/m were offered to confirm the equipment accuracy and standard error. CONCLUSION: It was suggested that the developed equipment could be automatically applied for measurement with accuracy of over 96% and standard errors of less than 5% on 12 macro- and micro compositions such as a NO3-N, PO43- or Fe.

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

Nutrient Leaching from Leaf Litter of Emergent Macrophyte(Zizania latifolia) and the Effects of Water Temperature on the Leaching Process

  • Park, Sangkyu;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.289-294
    • /
    • 2003
  • To quantify nutrient loading from emergent macrophytes through leaching in the littoral zones of Paldang Reservoir, we conducted incubation experiments using leaf litter of the emergent macrophyte, Zizaniz latifolia. To separate the leaching process from microbial decay, we used $HgCl_2$ to suppress microbial activity during the experiment. We measured electric conductivity, absorbance at 280nm, total nitrogen and dissolved inorganic nitrogen, total phosphorus and soluble reactive phosphorus, Na, K, Mg and Ca amounts in leaf litter and in water. In addition, we examined the effects of water temperature and ion concentrations of ambient water on the leaching process. A total of 6% of the initial ash-free dry mass of leaf litter was lost due to leaching during incubation (four days). Electric conductivity and A280 continued to increase and saturate during the incubation. To compare reaching rates of different nutrients, we fitted leaching dynamics with a hyperbolic saturation function [Y=AㆍX/(B+X)]. From these fittings, we found that ratios of leaching amounts to nutrient concentration in the litter were in the order of K > Na > Mg > P > Ca > N. Leaching from leaf litter of Z. latifolia was dependent on water temperature while it was not related with ion concentrations in the ambient water. Our results suggest that the leaching process of nutrients, especially phosphorus, from aquatic macrophytes provides considerable contribution to the eutrophication of the Paldang Reservoir ecosystem.

Dried Sugarcane Press Residue as a Potential Feed Ingredient Source of Nutrients for Poultry

  • Suresh, B.N.;Reddy, B.S.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1595-1600
    • /
    • 2011
  • Sugarcane press residue (SPR), a byproduct from the sugar industry was evaluated for it's nutrient and energetic quality in broilers and layers. The composition of SPR included (% DM): CP-11.76 (methionine-2.21, cystine-1.05, lysine-4.85, threonine-5.48% of CP), EE-7.87 (palmitic acid-30.3, stearic acid-4.1, oleic aicd-17.2, linoleic acid-38.0, linolenic acid-5.4% of EE), CF-10.08, TA-21.08 (Ca-3.87, P-1.10, Mg-0.95%, Fe-3500, Mn-284, Zn-113, Cu-61.5, Co-5.0 ppm and AIA-4.93%) and NFE-48.35% indicating that SPR is a valuable source of both organic and inorganic nutrients for poultry. The metabolic trials revealed the average ME of SPR as 749, 842 and 1,270 kcal/kg, respectively in broilers and 844, 936 and 1,031 kcal/kg in layers, at 10, 20 and 30% inclusion levels, respectively. Further, the fortification of SPR incorporated diets with biotechnological products viz., lipid utilizing agents (lipase and lecithin) or NSP degrading enzymes and their combination did not improve the ME content of such diets.

Control of Microalgal Growth and Competition by N: P Ratio Manipulation (N: P ratio 조절에 의한 미세조류 생장과 경쟁 제어)

  • Ahn, Chi-Yong;Lee, Jae-Yon;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.2
    • /
    • pp.61-68
    • /
    • 2013
  • Microalgae can grow autotrophically with the supply of light, carbon dioxide and inorganic nutrients in water through photosynthesis. Generally, microalgal growth is limited by the concentrations and relative ratio of nitrogen (N) and phosphorus (P) among the nutrients in the aquatic environment. Each microalga has its specific optimum N : P ratio resulting in dominance in a particular water having similar nutrient composition. Algal bloom is an immense growth of certain microalga commonly cyanobacterium and can be sequestrated by reducing the limiting nutrient, generally P in the freshwater. Moreover, dominance of a less toxic blooming strain can be established by manipulating N : P ratio in the water. On the other hand, microalgal biomass of a certain species can be enhanced by increasing limiting nutrient and adjusting the N : P ratio to the target species. The above-mentioned eco-physiological features of microalgae can be more completely interpreted in connection with their genomic informations. Consequently, microalgal growth regulation which can be achieved on the basis of its eco-physiological and further genomic insights would be helpful not only in the control of algal bloom, but also for an increased yield of algal biomass.

Estuarine Behavior and Flux of Nutrients in the Seomjin River Estuary (섬진강 하구역에서 영양염의 하구내 거동과 플럭스)

  • 권기영;문창호;이재성;양성렬;박미옥;이필용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • In order to estimate the nutrient flux of the Seomjin River into the coastal waters of South Sea, and to understand the estuarine reactions during mixing between river water and seawater, we collected surface water along the salinity gradient in the Seomjin River estuary from Mar. 1999 to Apr. 2001. We found that nitrate and silicate were delivered by fluvial input, while phosphate was, supplied from disposed wastes in the Gwangyang Bay. Mean annual flux of dissolved inorganic nitrogen (DIN), phosphate and silicate into the Gwangyang Bay was estimated 10.9 molesㆍsec$^{-1}$(4,820 tonnesㆍyr$^{-1}$), 0.07 molesㆍsec$^{-1}$(68 tonnesㆍyr$^{-1}$), 13.3 molesㆍsec$^{-1}$(11,747 tonnesㆍy$^{-1}$), respectively. An evident removal of phosphate, silicate and ammonium at the mid-salinity zone during the dry season was attributed to the active uptake of phytoplankton, and consequently nutrient flux into the Gwangyang Bay was low. Whereas, during the flood season in summer, conservative or additional distribution of the nutrients was observed in the estuary. As a rsult nutrient flux into the Gwangyang Bay was maintained high. High concentrations of chlorophyll a and the active removal of nutrient during the dry season at the mid-salinity zone suggest that nutrient distribution in the Seomjin River estuary was mainly controlled by biological processes and nutrient fluxes into the Gwangyang Bay might be significantly modified of by the primary production.

Tidal and Seasonal Variations of Nutrients in Keunso Bay, the Yellow Sea (서해 근소만에서 영양염의 조석 및 계절 변화)

  • Kim, Dong-Seon;Kim, Kyung-Hee
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • In order to find the effect of intertidal sediments on nutrient cycle in coastal environment, we measured ammonia, nitrate, phosphate, and silicate concentrations every hour during at least 12 hours in the entrance of Keunso Bay during four seasons. The content of ammonia and silicate do not change considerably with season, but nitrate shows large seasonal variation. In summer, nitrate concentration was much lower than in other seasons, which resulted from large biological uptake and active denitrification in intertidal sediments during summer. Phosphate also exhibit seasonal variations, but not that large like nitrate. N/P and N/Si ratios were lower in summer than in other seasons, which was due to active denitrification in the intertidal sediments during summer. For all seasons, ammonia concentrations were higher at low tide than at high tide, but nitrate concentrations were higher at high tide. Dissolved inorganic nitrogen concentrations measured in spring, summer, and winter were higher at high tide than at low tide, but in fall, they were higher at low tide than at high tide. For spring and winter, phosphate and silicate concentrations were higher at low tide than at high tide, while in summer and fall, they were higher at high tide than at low tide. In Keunso Bay, intertidal sediments affect significantly the nutrient cycle around the coastal areas. The intertidal sediments act as a source for ammonia and silicate, but as a sink for nitrate. However, phosphate is not considerably influenced by intertidal sediments.