• Title/Summary/Keyword: inorganic content

Search Result 830, Processing Time 0.029 seconds

Fabrication of Duplex Ceramic Composites by Organic-Inorganic Solution Process

  • Lee, Sang-Jin;Kim, Youn-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.837-841
    • /
    • 2003
  • Duplex microstructure of zirconia and alumina has been achieved via an organic-inorganic solution technique. Zirconium 2,4-pentanedionate, aluminum nitrate and polyethylene glycol were dissolved in ethyl alcohol without any precipitation. The organicinorganic precursor gels were turned to porous powders having volume expansion through explosive, exothermic reaction during drying process. The volume expansion was caused by abrupt decomposition of the organic groups in the gels during the vigorous exothermic reaction. The volume expanded, porous powders were crystallized and densified at 1500$^{\circ}C$ for 1 h. At the optimum amount of the PEG polymer, the metal cations were well dispersed in the solution and a homogeneous polymeric network was formed. The polymer content also affected on the specific surface area of the synthesized powder and the grain size of the sintered composite.

Colloidally stable organic-inorganic hybrid nanoparticles prepared using alkoxysilane-functionalized amphiphilic polymer precursors and mechanical properties of their cured coating film

  • Kim, Nahae;Li, Xinlin;Kim, Se Hyun;Kim, Juyoung
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.209-219
    • /
    • 2018
  • Colloidally stable organic-inorganic (O-I) hybrid nanoparticles could be prepared using an alkoxysilanefunctionalized amphiphilic polymer (AFAP) precursor. O-I hybrid sols could maintain colloidal stability for six months even at 45% solid content and be coated onto glass as well as PET film to form transparent O-I hybrid films. The formation of O-I hybrid nanoparticles dispersed in cured coating films could be confirmed using scanning electron microscopy. The cured coating film showed 3H and 5H pencil hardness on PET and glass, respectively. Nanoindentation measurements also showed that their modulus and hardness was varied with the type of AFAP used in its preparation.

A Study on the Chemical Compositions of Jeju Basalt for the Development of an Inorganic Insulation Material (무기 내화 단열재 개발을 위한 제주도 현무암의 화학조성에 대한 연구)

  • Gang, Myung-Bo;Kam, Sang-Kyu;Kim, Nam-Jin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • The basalt fiber, which is found to be non-toxic and harmless to the human body, is expected to become a trend for industrial fibers as they have better properties of non-combustion, heat-resistant, soundproof, absorbent, moistureproof, wear-resistant, corrosion resistant, lightweight, and high strength properties. Thus, in this study, we analyzed the chemical compositions of basalt produced at seven sites on Jeju Island for making a high value inorganic insulation material. The results showed that the MgO content of basalt collected from the eastern part of Jeju Island was higher than 7.5 percent, while that of the western region was less than 6 percent.

Effect of Inorganic Salt Additives on Formation of Phase-Inversion Polyethersulfone Ultrafiltration Membrane (상변환 Polyethersulfone 한외여과막 제조시 무기염 첨가 효과)

  • 김민정;이상덕;염경호
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.75-89
    • /
    • 2002
  • The effect of addition of inorganic salts in polyethersulfone (PES) polymer solution on the membrane formation and ultrafiltartion performance was studied through the thermodynamic and kinetic properties of casting solution. To control the thermodynamic and kinetic properties of casting solution, various inorganic salts $[CaC1_2, LiCl, LiClO_4, ZnC1_2 $and Mg(ClO_4)_2]$ were added in the PES/NMP solution. Variation of membrane morphology and performance of the resulting membranes with change of the salt type and content added in tasting solution were discussed using viscosity, coagulation value, light transmittance measurement, overall membrane porosity, ultrafiltration experiment and cross-sectional SEM image. For all kind of inorganic salts, according as increase of the salt content in casting solution, viscosity is increased, coagulation value becomes lower, top layer thickness below the skin surface is increased, bovine serum albumin(BSA) rejection decreased and pure water flux is increased except $CaC1_2$ and LiCl. In case of $CaC1_2$ and LiCl, it is found that when the salt content is increased, the formation of macrovoids is suppressed and the precipitation rate becomes slow while instantaneous demixing of precipitation type is maintained. However, in case of $LiClO_4$ and $Mg(ClO_4)_2,$ it is found that precipitation rate becomes faster.

Effects of Soil Environments by Location on the Cambium Electric Resistance of Pinus thunbergii in Urban Park and Open Space (도시공원녹지의 입지별 토양특성이 곰솔의 형성층 전기저항에 미치는 영향)

  • Park, Seung-Burm;Nam, Jung-Chil;Kim, Seok-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The purpose of this study is to propose rational methods in order to maintain vegetation condition and soil environment based on the analysis of tree growth in relation to the soil environment, which is one of the most significant environmental factors on vegetation condition in urban parks and open spaces. The result of the study can be described as below;The soil on every study site had strong acidity. In particular, study sites around industrial district and central business district showed extreme soil acidity. Therefore, soil management system is needed in urban parks and green spaces around those areas. Among Cambium Electric Resistance classified by locations of urban parks and open spaces, one in the costal area was the lowest. The Cambium Electric Resistance in the industrial area was the highest. Therefore, soil condition and locational environment in the industrial area are highly related to the Cambium Electric Resistance. Among the factors, which affect Cambium Electric Resistance in different locations, inorganic content was found to be the main factor in all of the study sites. Inorganic content was an important factor to the Cambium Electric Resistance in study sites located in industrial and central business districts. In the study sites located in costal area, Soil acidity was found to be other important factors that affect Cambium Electric Resistance. To improve the soil acidity, soil buffering ability should be improved from activating microorganisms in the soil by using lime and organic material, Since it takes a long time to make a change in the soil structure, well planed maintenance system is required by mid-term or long-term plans.

Preparation of Solventless UV Curable Thermally Conductive Pressure Sensitive Adhesives and Their Adhesion Performance

  • Baek, Seung-Suk;Park, Jinhwan;Jang, Su-Hee;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2017
  • Using various compositions of thermally conductive inorganic fillers with boron nitride (BN) and aluminum oxide ($Al_2O_3$), solventless UV-curable thermally conductive acrylic pressure sensitive adhesives (PSAs) were prepared. The base of the PSAs consists of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and isobornyl acrylate.The compositions of the thermally conductive inorganic fillers were 10, 15, 20, and 25 phr in case of BN, and 20:0, 15:5, 10:10, 5:15, and 0:20 phr in case of $BN/Al_2O_3$. The adhesion properties like peel strength, shear strength, and probe tack, and the thermal conductivity of the prepared PSAs were investigated with different thermally conductive inorganic filler contents. There were no significant changes in photo-polymerization behavior with increasing BN or $BN/Al_2O_3$ content. Meanwhile, the conversion rate and transmittance of the PSAs decreased and their thermal stabilities increased with increasing BN content. Their adhesion properties were also independent of the BN or $BN/Al_2O_3$ content. The dispersibility of BN in the acrylic PSAs was better than that of $Al_2O_3$ and it ranked the thermal conductivity in the following order: BN > $BN/Al_2O_3$ > $Al_2O_3$.

Effect of Acrylic Acid Contents and Inorganic Fillers on Physical Properties of Acrylic Pressure Sensitive Adhesive Tape by UV Curing (아크릴산 함량 및 무기물 충전제가 UV 경화형 아크릴 점착테이프의 물성에 미치는 영향)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Acrylic pressure sensitive adhesive (PSA) tapes were used for the automotive, the electrical and the electronic industries and the display module junction. In this study, the manufacture of high-strength structural tape used 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC), and UV irradiation for photo-polymerization, and the semi-structural properties of acrylic PSA tape with the AAC content and inorganic filler $SiO_2$ content were investigated. The initial adhesion strength was lowered by the rigidity of molecule chains due to the use of AAC, and the adhesion strength increased with increasing wetting time. The wetability, contact angle, and SEM images of PSA tapes with various contents of AAC were determined. Without filler, the peel strength and dynamic shear strength of PSA tape showed inverse correlation but the peel strength and dynamic shear strength increased with increasing filler content. From these correlations the PSA tapes could be optimized for the applications requiring high performance.

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

Comparison of Biochemical Components among Different Fodders-treated Antlers (각종 사료군의 투여에 따른 녹용 성분의 비교)

  • Ha, Young-Wan;Jeon, Byong-T.;Moon, Sang-H.;Kim, Yeong-Shik
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.40-44
    • /
    • 2003
  • Antler has been used as one of the important traditional oriental medicines for many years. It contains many biochemical components including lipids, peptides, carbohydrates, and inorganic substances. The various biological activities of antler are being considered owing to such biochemical components. The purpose of this research is to compare the biochemical components of antlers after treatment of three different kinds of fodder. They are mulberry (group A), Lycii Fructus (group B) and the complex of herbs (group C). The chemical composition of each antler was determined in three sections (top, middle, and bottom) and compared with those of the control. The contents of sialic acid, uronic acid and glycosaminoglycans increased in the top antlers of the group B. Total lipids content increased in the top antlers of all groups (A, B, and C). The concentration of inorganic ions (Ca, Mg, and P) decreased in all groups. Fattyacid composition was also analyzed by GC-MS and expressed as percentage of total fatty acid concentration. The content of palmitic acid decreased in all groups. The content of 2-hydrox-yhexadecanoic acid, which has not been reported in aster, increased in the top antlers of all groups. These results suggest that the treatment of special fodder may affect the composition of the biochemical components of antlers.

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.