• Title/Summary/Keyword: inoculum density

Search Result 82, Processing Time 0.027 seconds

Use of Quantitative Models to Describe the Efficacy of Inundative Biological Control of Fusarium Wilt of Cucumber

  • Singh, Pushpinder P.;Benbi, Dinesh K.;Young, Ryun-Chung
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.129-132
    • /
    • 2003
  • Fusarium wilt of cucumber caused by Fusarium oxy-sporum f. sp. cucumerinum is a serious vascular disease worldwide. Biological control of Fusarium wilt in several crops has been accomplished by introducing non-pathogenic Fusarium sup. and other biocontrol agents in soil or in infection courts. In this study, quantitative models were used to determine the biocontrol efficacy of inundatively applied antagonist formulations and the length of their effectiveness in controlling Fusarium wilt of cucumber. Quantitative model of the form [Y=L (1${-exp}^{-kx}$)] best described the relationship between disease incidence (Y, %) and inoculum density (X) of isolates F51 and F55. Isolate F51 was selected as a more virulent isolate based on the extent of its effectiveness in causing the wilt disease. The degree of disease control (Xi/X) obtained with the density of the biocontrol agent (Z), was described by the model [Xi/X=A (1${-exp}^{-cz}$)]. The zeolite-based antagonist formulation amended with chitosan (ZAC) was better at lower rates of application and peaked at around 5 g/ kg of the potting medium, whereas the peat-based antagonist formulation (PA) peaked at around 10 g/kg of the potting medium. ZAC formulation provided significantly better suppression of Fusarium wilt as described by the curvilinear relationship of the type Y= a+bX+c$X^2$, where Y represents percent disease incidence and X represents sustaining effect of the biocontrol agent.

Enhancement of Biocontrol Efficacy of Serratia plymuthica A21-4 Against Phytophthora Blight of Pepper by Improvement of Inoculation Buffer Solution

  • Shen, Shun-Shan;Park, Sin-Hyo;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • The production of antibiotic substances by Serratia plymuthica A21-4 was greatly enhanced by modifying components of a growth medium. When the minimal medium containing $K_2HPO_4$ 0.7%, $KH_2PO_4$ 0.2%, $(NH_4)_2SO_4$ 0.1%, $MgSO_4$ 0.01% was used as basal medium, the best carbon source for antibiotic production was glycerol and the most favorable nitrogen source was ammonium sulfate. The modified medium for antibiotic production also increased colonization ability of A21-4 on pepper root and in the rhizosphere soil. When the cells of A21-4 were suspended in modified medium, the population density of A21-4 on pepper root was 10-100 times higher than that suspended in 0.1 M $MgSO_4$. The population density of A21-4 on root did not decrease under $10^6$ cfu/groot up to 21 days after treatment although the inoculum of A21-4 was reduced to $10^7$ cell/ml. Similar tendency was also observed in the rhizosphere soil. Consequently, Phytophthora blight of pepper was successfully controlled by A21-4 with $10^7$ cell/ml suspended in the modified buffer solution instead of $10^9$ cfu/ml suspended in 0.1 M $MgSO_4$.

Involvement of Growth-Promoting Rhizobacterium Paenibacillus polymyxa in Root Rot of Stored Korean Ginseng

  • Jeon, Yong-Ho;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.881-891
    • /
    • 2003
  • Paenibacillus polymyxa is a plant growth-promoting rhizobacterium (PGPR) which can be used for biological control of plant diseases. Several bacterial strains were isolated from rotten roots of Korean ginseng (Panax ginseng C. A. Meyer) that were in storage. These strains were identified as P. polymyxa, based on a RAPD analysis using a P. polymyxa-specific primer, cultural and physiological characteristics, an analysis utilizing the Biolog system, gas chromatography of fatty acid methyl esters (GC-FAME), and the 16S rDNA sequence analysis. These strains were found to cause the rot in stored ginseng roots. Twenty-six P. polymyxa strains, including twenty GBR strains, were phylogenetically classified into two groups according to the ERIC and BOX-PCR analyses and 16S rDNA sequencing, and the resulting groupings systematized to the degrees of virulence of each strain in causing root rot. In particular, highly virulent GBR strains clustered together, and this group may be considered as subspecies or biovar. The virulence of the strains seemed to be related to their starch hydrolysis enzyme activity, but not their cellulase or hemicellulase activity, since strains with reduced or no starch-hydrolytic activity showed little or no virulence. Artificial inoculation of the highly virulent strain GBR-1 onto the root surfaces of Korean ginseng resulted in small brown lesions which were sunken and confined to the outer portion of the root. Ginseng root discs inoculated in vitro or two-year-old roots grown in soil drenched with the inoculum developed significant rot only when the inoculum density was $10^{6}-10^{7}$ or more colony-forming units (CFU) per ml. These results suggest that P. polymyxa might induce ginseng root rot if their population levels are high. Based on these results, it is recommended that the concentration of P. polymyxa should be monitored, when it is used as a biocontrol agent of ginseng, especially in the treatment of stored roots.

Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity

  • Jo, Youn Sook;Park, Hye Bin;Kim, Ji Yun;Choi, Seong Min;Lee, Da Sol;Kim, Do Hoon;Lee, Young Hee;Park, Chang-Jin;Jeun, Yong-Chull;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.335-345
    • /
    • 2020
  • Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSB-mediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

Nodulation and N2 Fixation in Groundnut as Affected by Inoculation Method (땅콩의 근류형성(根瘤形成)과 질소고정(窒素固定)에 대한 근류균(根瘤菌) 접종방법(接種方法)의 영향(影響))

  • Kim, Moo-Key;So, Jae-Don;Park, Kun-Ho;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.77-88
    • /
    • 1992
  • Effective strains of cowpea bradyrhizobia JB7 $nal^rspe^r$ and CB756 $str^rrif^r$, antibiotic-resistant variants of JB7 and CB756, respectively, were used to examine changes of rhizosphere populations and nodule occupancy. Populations of each strain increased gradually in the rhizosphere, reaching a maximum of about $10^8$ cells per root system. Nodule number increased as the density of inoculum increased from $10^2$ cells to $10^8$ cells per seed. Inoculation with liquid suspension resulted in the formation of more nodules than the peat slurry or granule inoculation. When JB7 $nal^rspe^r$ and CB756 $str^rrif^r$ were introduced in equal numbers in inoculum mixtures the former consistantly occupied the majority of nodules with all three groundnut cultivars used. There was no difference in yield between nitrogen treatments and inocultation treatments.

  • PDF

An Evaluation Method for Sesame (Sesamum indicum L.) Resistance to Phytophthora nicotianae var. parasitica (참깨발병 품종저항성 검정방법 연구)

  • Seong Ho, Choi;Eui Kyoo, Cho;Young Am, Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.173-180
    • /
    • 1987
  • Symptom development and disease severity of Phytophthora blight in the sesame plants varied depending upon age of the plants tested, inoculation method, watering method, and inoculum density in both susceptible Suweon 9 and Suweon 26 and moderately resistant B-67 and IS 103 sesame lines to Phytophthora nicotianae var. parasitica when inoculated. However, successful differentiation of the sesame lines for varietal resistance was possible using 20-day old seedling, inoculation by soil infestation, saturated soil water condition by half immersion of pots in water tank, and 200 sporangia per one ml of inoculum. Spraying or soil inoculation to 70-day old plants also was effective in differentiating the varietal resistance. By the screening method Suwon 26 showed 100% diseased plants and symptom severity index 9.0, while B-67 showed 20% diseased plants and symptom severity index 1.7. The rating scale given was from 0 through 9. For example, the scale 0 signified no symptom development, 5 signified discoloration of basal part of stem, and 9 signified discoloration of stem more than 10 cm high above the soil surface with blighted leaves. Differentiation in symptom severity also was made by percentage of the lesion area. Results evaluated using both parameters were well corresponded in varietal reaction of sesame to Phytophthora blight.

  • PDF

Development of Efficient Screening Method for Resistant Cabbage and Broccoli to Plasmodiophora brassicae (양배추 및 브로콜리 뿌리혹병에 대한 효율적인 저항성 검정 방법 확립)

  • Jo, Su-Jung;Shim, Sun-Ah;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.86-92
    • /
    • 2012
  • Clubroot caused by Plasmodiophora brassicae Woron. is one of the most important diseases in Brassica crops worldwide. To establish more simple and reliable screening method for resistant cabbage and broccoli to P. brassicae, the development of clubroot on the plants according to inoculum concentration and incubation period after inoculating with the pathogen was investigated using P. brassicae GN1 isolate (race 9). To facilitate and acquire precise result of resistance screening of cabbage and broccoli to clubroot, 14-day-old seedlings were inoculated by drenching roots with the spore suspension of P. brassicae to give inoculum density of $2.5{\times}10^9$ spores/pot. To develop the disease, the inoculated seedlings were incubated in a growth chamber at $20^{\circ}C$ for 3 days, and then cultivated in a greenhouse ($20{\pm}5^{\circ}C$) for five weeks. Under the optimum conditions, 16 cabbage and 17 broccoli cultivars were tested for resistance to four field isolates (GN1, GN2, GS and YC) of P. brassicae collected from four regions in Korea. Among them, some cabbage and broccoli cultivars showed different resistance response to three isolates (GN1, GN2 and GS) determined as race 9 by using the differential varieties of Williams. On the other hand, all the tested cultivars were highly susceptible to YC isolate (race 2). The results suggest that this method is efficient screening method of cabbage and broccoli for resistance to P. brassicae.

Effects of Sterilization and Cultivation Temperatures of Oak Sawdust Medium on Lentinula edodes Hyphal Growth (참나무 톱밥배지의 살균 및 배양온도가 표고 균사생장에 미치는 영향)

  • Koo, Chang-Duck;Lee, Hwa-Yong;Lee, Gwi-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.77-82
    • /
    • 2012
  • Sterilization of oak sawdust at $65^{\circ}C$ for Lentinula edodes bed cultivation can be efficient in sterilization facility cost, but its effect on the mushroom production is uncertain due to high contamination probability. The effective conditions for L. edodes hyphal growth in the low temperature sterilized oak sawdust were investigated with combinations of three sterilization temperatures ($65^{\circ}C$, $100^{\circ}C$ and $121^{\circ}C$) and four cultivation temperatures ($15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$). L. edodes inoculation density effect was also tested with 1 cm, 2 cm, and 4 cm distance in the sawdust (4%, 11% and 25% inoculation rate by surface area). L. edodes hyphal growth in the sawdust sterilized at $65^{\circ}C$ was as much as at those $100^{\circ}C$ and $121^{\circ}C$ when the fungus cultured below $25^{\circ}C$, but it was greatly reduced when cultured at $30^{\circ}C$. And the sawdust medium with 1cm distance inoculation density was fully occupied with L. edodes hyphae, but those with 2~4cm distance inoculation were contaminated by 4~33%. Therefore, we conclude that low temperature sterilized oak sawdust needs to be cultured under $25^{\circ}C$ after sufficient inoculation by 25% for successful bed cultivation of L. edodes.

Development of Method for Quantitative Analysis of Pycnidiospore Dispersal from the Apple Tree Stems Infected by White Rot (사과 겹무늬썩음병에 걸린 가지로부터 분산되는 병포자의 정량적 조사법 개발)

  • Yang, Hee-Jung;Choi, Chang-Hee;Woo, Hyun;Kim, Dai-Hee;Uhm, Jae-Youl
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.325-330
    • /
    • 1998
  • On the basis of the fact that the pycnidiospore of Botryosphaeria dothidea, the causal fungus of apple white rot is a typical water borne spore, a method for quantitative analysis of pycnidiospore dispersal from the warts produced on the diseased apple tree stem was developed. The warts on which cracks developed either on or around them were cut off at the base, and shaked in the water for 4hours at 2$0^{\circ}C$, in which condition the maximum number of spores were released. The volume of shaking solution was calculated as 1 ml per one wart. At the end of shaking, Trio, a household detergent was added to the shaking solution to the concentration of 0.1%, and shaked for additional 10 minutes at 35$^{\circ}C$ to take off the spores attached on the glass ware. One milliliter of the spore suspension thus prepared were passed through transparent membrane filter (pore size : 3.0 ${\mu}{\textrm}{m}$), and the spores attached on the filter were counted under a microscope ($\times$200) after staining them with lactophenol supplemented with aniline blue. The results thus obtained were statistically consistent when at least 30 warts were used simultaneously in single shaking. This method can be applicable in the elucidation of ecology of sporulation and spore dispersal, and also in the screening of the sporulation inhibitor which can be used in the control of the disease by reducing the inoculum density.

  • PDF

A New Method for Sclerotial Isolation of Two Species of Sclerotium from Infested Soils

  • Kwon, Mi-Kyung;Shim, Hong-Sik;Yeh, Wan-Hae;Kim, Taek-Soo;Cho, Weon-Dae;Kim, Choong-Hoe;Kim, Yong-Ki
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.240-243
    • /
    • 2004
  • White rot on Allium crops recently had a high incidence with incrensed cultivating areas of tropical garlic types in Korea. Two types of Sclerotium have known as causal agents that produce different size and shapes of sclerotia in infested fields. Therefore, we developed a new method for isolation of sclerotia from infested field soils that can be used for ecological study of Sclerotium spp. and establishment of control strategy. Soil samples collected from heavily infested fields were evenly mixed and placed on a automatic sieve shaker connected with tap water, After 10 min of shaking, residues on 0.5 mm and 0.25 mm sieves were separately collected and suspended with 70% sugar solution, which method floats sclerotia in aqueous layer, Then, floated fraction was carefully separated and mixed with a same volume of 1% sodium hypochlorite solution to differentiate with organic materials. This method provides a direct count of sclerotia under a dissecting microscopy.