• Title/Summary/Keyword: inner tank

Search Result 166, Processing Time 0.028 seconds

Estimation of nuclear heating by delayed gamma rays from radioactive structural materials of HANARO

  • Noh, Tae-yang;Park, Byung-Gun;Kim, Myong-Seop
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.446-452
    • /
    • 2018
  • To improve the accuracy and safety of irradiation tests in High flux Advanced Neutron Application ReactOr (HANARO), the nuclear energy deposition rate, which is called nuclear heating, was estimated for an irradiation capsule with an iridium sample in the irradiation hole in order. The gamma rays emitted from the radioisotopes (RIs) of the structural materials such as flow tubes of fuel assemblies and heavy water reflector tank were considered as radiation source. Using the ORIGEN2.1 code, emission rates of delayed gamma rays were calculated in consideration of the activation procedure for 8 years and 2 months of HANARO operation. Calculated emission rates were used as a source term of delayed gamma rays in the MCNP6 code. By using the MCNP code, the nuclear heating rates of the irradiation capsules in the inner core, outer core, and heavy water reflector tank were estimated. Calculated nuclear heating in the inner core, outer core, and heavy water reflector tank were 200-260 mW, 80-100 mW, and 10 mW, respectively.

Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle (배플을 갖는 원통형 유체저장 탱크의 연성진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

Weldment Design of Supports for Cryogenic Storage Tank considering Insulation (단열을 고려한 초저온 액체질소 저장 탱크의 지지대 용접부 설계)

  • Choi, Dong-Jun;Oh, Jung-Taek;Jung, Jae-Hyun;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.131-136
    • /
    • 2008
  • The double-walled steel vessel with powder insulation in the space between the walls is used to minimize heat transfer by radiation and conduction in cryogenic storage tank. The vacuum required the insulation is much less extreme than with high-vacuum or multilayer insulations. The solid supports are used to bear the weight of the inner container. Thermal and structural analysis of the tank have been carried out to study the effect of vacuum and weldment geometry of the internal supports. Heat flux in wall is increased with increasing of thermal conductivity of perlite. Heat flux and stress of support is not affected by weldment geometry.

A thermal stress and crack study by computer modelling (전산해석에 의한 온도응력 및 온도균열 검토)

  • 문수동;이상호;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

A Study of Sloshing Tank on Vessel Motions with Various Baffle Clearance (탱크 내 격벽에 의한 간극 변화가 선박 운동에 미치는 영향 연구)

  • Kim, Kyung Sung;Yu, Sunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.796-802
    • /
    • 2018
  • The effects of inner liquid sloshing on vessel motions are a well-known factor. It was investigated experimentally and numerically. In this regard, the study of many efforts to reduce natural phenomena of vessel motions by adopting special devices especially for roll motions. Among many devices, inserting baffles in the inner liquid tank is very common. In this study, one investigated the vessel motions with inner sloshing tanks with baffles inside. For the numerical simulation, one employed a dynamically coupled program between boundary-element-method-based vessel motion analysis program and a particle-based computational fluid dynamics program. Comparing corresponding experimental results validated the dynamically coupled program. The validated coupled program was used to simulate vessel motions, including sloshing effects with various lengths of inner baffles. The simulation results show that not only the filling ratio of inner liquid, but also the length of clearance due to baffles influenced the vessel motions. The significant point of this study was that the natural frequency of vessel motions can be maintained irrespective of the amount of filling ratio through adjustment of the clearance. In a future study, the effects of various numbers of baffles with various clearances would be conducted to percuss the possibility of vessel motion control with inner liquid sloshing effects.

Implementation of a Residual Quantity Monitoring System in a Liquefied Gas Storage Tank based on Wireless Sensor Network Technology (무선센서 네트워크 기술 기반 액화가스 저장탱크 내 잔량 모니터링 시스템 구현)

  • Kim, Min-Kyu;Han, Hae-Jin;Han, Jaehwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.352-356
    • /
    • 2018
  • This paper relates to a technology for monitoring a liquefied gas storage tank in the special gas field where demand is increasing owing to the continuous growth of related fields such as the semiconductor, display, and ICT convergence electronics industries. We have proposed a system for real - time monitoring using wireless sensor network technology, and implemented a system consisting of a sensor unit, transmitter module, and receiver module to be attached to a liquefied gas storage tank. The system was applied to LCO2 tanks among various liquefied gas storage tanks to verify the feasibility. The storage tanks employed in the experiments has capacities of 16,179 l and was 1,920 mm in inner diameter. Furthermore, the density was 1.03 g/l. The measured data were compared with reference data on the remaining gas level versus the $CO_2$ height of the surface, expressed using a conventional water meter, provided by an existing storage tank supplier. The experimental results show that the data is similar to the standard data provided by the tank supplier, and has a high accuracy and reliability within an error range of 0.03%.

Experimental Study on Sloshing in Rectangular Tank with Vertical Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 현상에 대한 실험적 연구)

  • Hyeon, Jong-Wu;Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.291-299
    • /
    • 2015
  • A variety of inner baffles are often installed to reduce liquid sloshing and prevent tank damage. In particular, a porous baffle has a distinct advantage in reducing sloshing by changing the natural periods and dissipating the wave energy in a tank. In model tests, porous baffles with five different porosities were installed vertically in a liquid tank under sway motion. The free surface elevations and pressures were measured using an image processing technique and a pressure gage for various combinations of baffle's porosity and submergence depth, and tank's amplitude and period. The experimental results were in good agreement with the analytic solutions (Cho, 2015), with the exception of a quantitative difference at resonant periods. The experimental results showed that the sloshing characteristics in a tank were closely dependent on both the porosity and submergence depth of the baffle, and the optimal porosity existed near P = 0.1275.

A Study on Injection Nozzle and Internal Flow Velocity for Removing Air Bubbles inside the Sample Tanks during Hydraulic Rupture Test (수압파열시험 시 시료 탱크 내부 기포 제거를 위한 주입 노즐 및 내부 유속 연구)

  • Yeseung, Lee;Hyunseok, Yang;Woo-Chul, Jung;Dong Hoon, Lee;Man-Sik, Kong
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.9-15
    • /
    • 2022
  • In order to verify the durability of the high-pressure hydrogen tank in the operating pressure range, a hydraulic rupture test should be performed. However, if the bubbles generated by the initial injection process of water are attached to the inner wall of the tank and remain, a sudden pressure change of the bubbles during the rupture of the pressurized tank may cause shock and noise. Therefore, in this study, the flow velocity required to remove the bubbles remaining on the inner wall of the tank was predicted through simplified formulas, and the shape of the injection nozzle to maintain the flow velocity was determined based on the shape of the hydrogen tank for the hydrogen bus. In addition, a numerical model was developed to predict the change in flow velocity according to the inlet pressure, and an experiment was performed through a model tank to prove the validity of the prediction result. As a result of the experiment, the flow velocity near the tank wall was similar to the predicted value of the analysis model, and when the inlet pressure was 1.5 to 5.5 bar, the minimum size of the removable bubble was predicted to be about 2.2 to 4.6 mm.