• Title/Summary/Keyword: inner tank

Search Result 166, Processing Time 0.026 seconds

Design Safety Analysis of $9\%$ Nickel Steel Structure in Inner Tank Storage System (내부탱크 저장 시스템에서 $9\%$ 니켈강재 구조물의 설계 안전성에 관한 연구)

  • Kim Chung Kyun;Choi Dong Yul
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.49-55
    • /
    • 2001
  • This paper presents the design safety analysis of the inner tank structure, which is manufactured by 9 percent nickel steel sheets in the full containment type LNG storage tank. The FEM computed results indicate that top girder and several stiffener rings of the inner tank play an important role for controlling the deformation and stress intensity of the inner tank structure. The hydrostatic pressure due to cryogenic fluids gave more influential to the deformation of the inner tank wall compared with that of a cryogenic temperature of $-162^{\circ}C$. But, the deformation and stress of the inner tank. which is produced by the buckling loads, are very small because the external load is not applied to the top of the inner tank. This indicates the role of top girder and stiffener rings of the inner tank model is not important in full containment LNG storage tank.

  • PDF

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank with Tension Steel Cables (인장강선을 사용한 완전방호식 LNG 저장탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.18-24
    • /
    • 2008
  • This paper presents the stress and deformation behaviors of 9% nickel steel inner tank in a full containment LNG storage tank using a FE analysis. For an increased strength safety of an inner tank, the tension cable was fastened around the outside wall of an inner tank, which is known as a weak zone for the hydrostatic pressures, cryogenic temperature loads, and other loadings. Based on the FEM computed results between a conventional inner tank and a inner tank with tension cables around the lower part of the side wall of an inner tank, the redesigned inner tank is more safe than that of the conventional tank without a tension cable. The FEM results recommend $3{\sim}4$ steel tension cables with a diameter of 50mm for an increased strength safety of the inner tank, which may decrease the stress concentration and deformation near the lower part of the side wall. Thus the tension cable around the inner tank may be used as an alternative safety device compared to the stiffener and the top girder structures for the increased LNG storage tank, especially.

  • PDF

On the Leakage Analysis of a Full Containment Tank Using a FEM

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.45-50
    • /
    • 2006
  • In this paper, the leakage safety of prestressed concrete structure including the insulation panels has been analyzed using a finite element analysis just after a collapse of 9% nickel inner tank. This FEM study shows that the outer tank may contain the leaked cryogenic liquid for the time being until the primary pump in the inner tank transports stored cryogenic liquids to the nearest LNG storage tank before the outer tank is demolished. This means that the total tank thickness from the insulation panel to the outer tank system safely may retain the leaked cryogenic fluids. The FE computed results indicate that the current structure in a full containment tank is obviously enough to securing the leak-proof safety of the tank system with two primary pumps.

On the Prediction of Inner Pressure for the Tank in Rolling Motion (동요하는 탱크의 내부 변동압력 추정에 관한 연구)

  • Lee, Seung-Keon;Sea, Young-seok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.459-464
    • /
    • 2003
  • The inner liquid pressure of an airtight tank in rolling motions is investigated by means of forced oscillation tests, and the simple method to estimate the inner liquid pressure is proposed. A rectangular solid tank, which is fully filled with water, was used in the forced oscillation test of rolling motion. The inner pressure variations in time were measured at several points on the inner walls of tank. Measured pressures are compared with the calculated ones, and estimation methods of the inner liquid pressure of the tank in rolling motion are studied based on the considerations of the origin of pressure.

Measurement of Real Deformation Behavior in C-type Lng Mock-up Tank using Strain Gage (스트레인 게이지를 이용한 C-type LNG Mock-up 탱크 내조 실 변형 거동 측정)

  • Jung, Won-Do;Kim, Tae-Wook;Kim, Jeong-Hyeon;Lee, Do-Young;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.117-124
    • /
    • 2016
  • A C-type LNG mock-up tank was constructed to evaluate the durability of the tank and its structural safety. An experimental strain analysis system equipped with strain gages was designed to investigate the structural behavior of the inner tank at a high hydraulic pressure. In addition, the insulation used in the space between the inner tank and outer tank had a compressive strength and the inner tank thickness of the cylindrical shell and hemisphere was 4.0 mm, which was designed to be thinner than the existing rules. The strains on the inner tank were measured with increasing pressure, and these measurements were compared and analyzed at the strain gage attachment points.

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank System with Damping Safety Structures (댐핑안전 구조물을 고려한 완전밀페식 LNG 저장탱크 시스템의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the finite element analysis on the strength safety of a full containment LNG storage tank system with damping safety structures. For the FEM analysis of the inner tank, the combined loads in which are related to a hydrostatic pressure, a cryogenic temperature load, BOG pressure, LNG weight, and a sinking force at the comer of the inner tank have been applied to the inner tank structure. The FEM computed results show that the conventional inner tank is safe for the given combined loads, but the damping safety structure such as compressive springs may be more useful structures to increase the safety of the tank system. The increased stiffness and the appropriate position of the springs are very important design parameters for increasing the damping strength safety of the tank system.

  • PDF

A Study on the Inner tank Seismic Analysis Model for Calculation of Seismic Forces of LNG Storage Tank (LNG저장탱크 지진력 산정을 위한 내부탱크 지진해석 모델에 관한 연구)

  • Kim, Miseung;Lee, Kangwon;Kim, Junhwi;Yoon, Ihnsoo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2013
  • LNG(Liquefied Natural Gas) has been considered as the green energy. Thus, the demand of natural gas is keep increasing around the world, and various studies are actively under progress about the LNG storage tank. To calculate the seismic forces of actual LNG storage tank, FEM model has to include inner tank, outer tank, pile and soil to implement the interaction between structure and ground. So, this paper is represent the study about inner tank model of three cases using Malhotra method in EN 1998-4(European Standard). The results of calculation were compared, and the most suitable to inner tank model was suggested.

The Development of Life Evaluation Program for LNG Storage Tank considering Fatigue and Durability (피로 및 내구성을 고려한 LNG 저장탱크의 수명평가 프로그램 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • The LNG storage tank as core facility of LNG industry is mainly composed of the inner tank of nikel 9% steel and the outer tank of prestressed concrete. To respond proactively increased risk of structure performance deterioration due to fatigue of the inner tank and durability reduction of the outer tank, life evaluation program for LNG storage tank is needed. In this study, life evaluation program for LNG storage tank was developed to assess fatigue of the inner tank and durability(carbonation and chloride attack) of the outer tank. By defining the main three scenarios in the inner tank, the fatigue life analysis is conducted from structural analysis and Miner's damage rule. Carbonation progress of the outer tank is predicted according to thickness of cover concrete by using carbon dioxide contents and data of penetration depth. To consider a variety of input conditions and a reliability in results of chloride attack, the evaluation of choride attack for the outer tank is constructed through Life-365 program of open source.

A Study on the Integrated Control and Safety Management System for 9% Ni Steel LNG Storage Tank (9% 니켈강재식 LNG 저장탱크용 통합제어안전관리시스템에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.13-18
    • /
    • 2010
  • This paper presents the development of an integrated control and safety management system for 9% nickel steel LNG storage tank. The new system added the measuring equipment of pressure, displacement and force compared to the conventional measurement and control system. The measured data has simultaneously been processed by integrating and analyzing with new control equipments and safety management systems. The integrated control and safety management system, which may increase a safety and efficiency of a super-large full containment LNG storage tank, added additional pressure gauges and new displacement/force sensors at the outer side wall and a welding zone of a stiffener and top girder of an inner tank, and the inner side wall of a corner protection tank. The displacement and force sensors may provide failure clues of 9% nickel steel structures such as an inner tank and a corner protection, and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on 9% nickel steel tank fracture even though LNG is leaked until the leak detector, which is placed at the insulation area between an inner tank and a corner protection tank, sends a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force, and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from control systems such as displacement and force of 9% nickel steel tank safety, LNG level and density, cool-down process, leakage, and pressure controls.

A Study on Pressure Vessel using Cold Stretch Method (냉연신 공법을 이용한 압력용기의 제조에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-160
    • /
    • 2018
  • A pressure vessel consists of an inner tank and the outer tank; the material of the inner tank is austenite stainless steel, and the outer tank is general carbon steel. As the storage amount increase, the size of the inner tank for LNG also increases, which eventually increases the weight of the LNG storage tank. The Cold Stretch method can transport and store the LNG in a larger amount than the conventional pressure container, and the weight of the pressure vessel can also be reduced at 50 70% due to the reduction of the thickness, which is excellent from an economic and energy consumption perspective. Although the Cold Stretch method has these advantages, the domestic situation has not developed any related legislation. In this study, the actual production of pressure vessels using the Cold Stretch method will be processed and the volume expansion after the Cold Stretch will be checked and compared with the mechanical properties.