• Title/Summary/Keyword: inner displacement

Search Result 199, Processing Time 0.023 seconds

The Efficiency Evaluation of One Person Non-Prism Surveying System for Tunnel Measurement (터널계측을 위한 1인 무프리즘 측량시스템의 효율성 평가)

  • Park, Kyeong-Sik;Hahm, Chang-Hahk;Lee, Jae-Kee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2007
  • The tunnel measurement data such as deficiency quantity, outbreak quantity, inner displacement and crown settlement are very important elements in tunnel sites under construction and obtained mostly by displacement gauge and total station. However, it is difficult and dangerous to install targets or measurement equipments on the points in tunnel construction site and also we need several persons to work in the tunnel. Non-prism total station with remote control system which is developed recently has various efficient functions for tunnel measurement. Therefore, for efficient tunnel measurement, this study suggested one person surveying system which consisted of non-prism total station and notebook PC to control total station remotely, and we evaluated the suggested tunnel measurement system. In this study, the tunnel site under construction was chosen as the test field and tunnel surveying was done by existing surveying method and suggested method separately. As result of the test, we analyzed processing time and accuracy to demonstrate the superiority of suggested one person non-prism surveying system.

  • PDF

Analysis of the Strain Rate Effect in Electro-Magnetic Forming (전자기 성형에서의 변형률 속도 효과 해석)

  • 곽신웅;신효철;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1043-1058
    • /
    • 1990
  • The Strain rate effect in electro-magnetic forming, which is one of the high velocity forming methods, is studied by the finite element method in this paper. The forming process is simplified by neglecting the coupling between magnetic field and work-piece deformation, and the impulsive magnetic pressure is regarded as inner pressure load. A rate-dependent elasto-plastic material model, of which tangential modulus depends of effective strain rate, is proposed. The model is shown to well describe the transient increase of yield stresses, the decreases of the final displacement and yield stress, the decrease of the difference in the distribution of deformation along the axial direction, and the change of deformation mechanism due to strain rate effect. As a result, displacement, final deformed shape, radial velocity, deformation energy, and the changes of effective stress, effective strain and effective strain rate through plastic working are given. Based on the results, the effectiveness of this model and the strain rate effect of the deformation process of the work-piece are discussed.

Dynamic Characteristics of Reinforced Concrete Axisymmetric Shell with Initial Imperfection (초기결함을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성 -돔의 결함의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.77-85
    • /
    • 1999
  • In this study, a computer program considering initial imperfection of axisymmetric reinforced concrete shell which plastic deformation by large external loading was developed . Initial imperfection of dome was assumed as 'dimple type' which can be expressed as Wi=(Wo/h)(1-x$^2$)$^3$. The developed model applied to the analysis of dynamic response of axisymmetric reinforced concrete shell when it has initial imperfection. The initial imperfection of 0.0, -5.0, and 5cm and steel and steel layer ratio 0,3, and 5% were tested for numerical examples . The results can be summarized as follows ; 1. Dynmaic response of vertical deflection at dome crown showed slow increased if it has not inital imperfection . But the response showed relatively high amplitude when initial imperfection was inner directed (opposite direction to loading). Similar trends also appeared for different steel layer ratios. 2. Dynamic responses of radial displacement at the junction of dome and wall showed the highest amplitude when initial imperfection was inward directed (opposite direction to loading). The lowest amplitude occurred when initial imperfection was outward directed (same direction to loading). Vibration period also delayed for inward directed initial imperfection . These trends were obvious as steel layer ratio increasing. 3. The effects of imperfection for the dynamic response of radial displacement a the center of wall scarely appeared. The effects of initial imperfection of dome on the dynmaic response of the wall can be neglected. 4. Effect of steel on the dynmic response of axisymmetric shell structure was great when initial imperfection did not exist. And the effect of direction of initial imperfection (inward or outward) did not show big difference.

  • PDF

Experimental and numerical study on large-curvature curved composite box girder under hogging moment

  • Zhu, Li;Wang, Jia J.;Zhao, Guan Y.;Huo, Xue J.;Li, Xuan
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.117-136
    • /
    • 2020
  • Curved steel-concrete composite box girder has been widely adopted in urban overpasses and ramp bridges. In order to investigate its mechanical behavior under complicated and combined bending, shear and torsion load, two large-curvature composite box girders with interior angles of 25° and 45° were tested under static hogging moment. Based on the strain and deflection measurement on critical cross-sections during the static loading test, the failure mode, cracking behavior, load-displacement relationship, and strain distribution in the steel plate and rebar were investigated in detail. The test result showed the large-curvature composite box girders exhibited notable shear lag in the concrete slab and steel girder. Also, the constraint torsion and distortion effect caused the stress measured at the inner side of the composite beam to be notably higher than that of the outer side. The strain distribution in the steel web was approximately linear; therefore, the assumption that the plane section remains plane was approximately validated based on strain measurement at steel web. Furthermore, the full-process non-linear elaborate finite element (FE) models of the two specimens were developed based on commercial FE software MSC.MARC. The modeling scheme and constitutive model were illustrated in detail. Based on the comparison between the FE model and test results, the FE model effectively simulated the failure mode, the load-displacement curve, and the strain development of longitudinal rebar and steel girder with sufficient accuracy. The comparison between the FE model and the test result validated the accuracy of the developed FE model.

Study on Basic Characteristics of Hollow Piezoelectric Actuator for Driving Nanoscale Stamp (나노스템프 구동용 중공형 압전액추에이터 기본특성에 관한 연구)

  • Park, Jung-Ho;Lee, Hu-Seung;Lee, Jae-Jong;Yun, So-Nam;Ham, Young-Bog;Jang, Sung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1015-1020
    • /
    • 2011
  • Nanoimprint lithography has been actively investigated. This method can replicate a nanopatterned master stamp onto a thin polymer film on a silicon substrate and so on. In this study, a square-shaped hollow piezoelectric actuator is presented, which is newly developed. This actuator is used for driving a nanoscale stamp in nanoimprint lithography instead of a conventional electric motor. The fabricated prototype actuator has 95 layers and side lengths of 23 mm and 18 mm for the outer and inner squares, respectively. By adopting a novel process instead of the conventional forming process for fabricating a one-layer actuator, the one-layer is composed of four rectangular segments produced by sawing a ceramic film with a thickness of 0.3 mm. The basic characteristics on displacement and generation force of the fabricated prototype actuator are experimentally investigated. Furthermore, the displacement characteristics obtained by using a PI controller are tested and discussed.

Optimum Design on Lobe Shapes of Gerotor Oil Pump

  • Kim, J.H.;Kim, Chul;Chang, Y.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1390-1398
    • /
    • 2006
  • A gerotor pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular the pump is an essential machine element that feeds lubricant oil in an automotive engine. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the two rotors. Usually the outer one is characterized by lobes with a circular shape, while the inner rotor profile is determined as a conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to limit the pressure angle between the rotors. Now we will consider the design optimization. The first step is the determination of the instantaneous flow rate as a function of the design parameter. This allows us to calculate three performance indexes commonly used for the study of positive displacement pumps the flow rate irregularity, the specific flow rate, and the specific slipping. These indexes are used to optimize the design of the pump and to obtain the sets of optimum design parameter Results obtained from the analysis enable the designer and manufacturer of the oil pump to be more efficient in this field.

Beam-Column Junction Type Damper of Seismic Performance Enhancement for Structures (구조물의 내진성능 보강을 위한 보-기둥 접합형 감쇠장치)

  • Noh, Jung-Tae;Woo, Sung-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.855-863
    • /
    • 2009
  • In this study, a beam-column junction type damper is proposed which saves the inner and outer space for the installation of damping devices and allows easy adjustment of control performance The result of the numerical analysis indicated that the displacement response and base shear of a single degree of freedom system by seismic load, El Centro 1940 was reduced with yield moment of the joint hinge and the specific yield moment ratio $\delta$ of the joint hinge existed for the optimal seismic performance. In addition, the dynamic nonlinear characteristics, effects of yielding and dependence of natural period of bi-linear system with the junction type damper is identified. The analysis of multi-degree of freedom system showed that responses of the controlled structures was reduced significantly as the number of a story increases and yield moment ratio decreases when the system is excited by seismic load and sine wave. On top of that, it was also observed that energy dissipation at the joint connected with the dampers was remarkable during excitation.

  • PDF

Transverse reinforcement for confinement at plastic hinge of circular composite hollow RC columns

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Park, Woo-Sun;Kang, Young Jong
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.387-406
    • /
    • 2016
  • Confined transverse reinforcement was arranged in a plastic hinge region to resist the lateral load that increased the lateral confinement effect in the bridge substructure. Columns increased the seismic performance through securing stiffness and ductility. The calculation method of transverse reinforcements at plastic hinges is reported in the AASHTO-LRFD specification. This specification was only proposed for solid reinforced concrete (RC) columns. Therefore, if this specification is applied for another column as composite column besides the solid RC column, the column cannot be properly evaluated. The application of this specification is particularly limited for composite hollow RC columns. The composite hollow RC column consists of transverse, longitudinal reinforcements, cover concrete, core concrete, and an inner tube inserted in the hollow face. It increases the ductility, strength, and stiffness in composite hollow RC columns. This paper proposes a modified equation for economics and rational design through investigation of displacement ductility when applying the existing specifications at the composite hollow RC column. Moreover, a parametric study was performed to evaluate the detailed behavior. Using these results, a calculation method of economic transverse reinforcements is proposed.

Failure Study for Tribological Characteristics Including with Pad, Lining and Hub disk in Vehicle Brake System (자동차 제동시스템의 패드, 라이닝, 허브디스크에 관련된 트라이볼로지적인 특성에 관한 고장사례연구)

  • Lee, Il-Kwon;Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.269-274
    • /
    • 2011
  • The purpose of this paper is to study and analyze the improvement method for the failure examples including the vehicle brake system in actual field. It was verified that the indicator plate of pad wear scratched the brake disk because of wearing after displacement of non- identification parts pad. The caliper of other vehicle was installed with brake system verified the phenomenon produced groove in center point because of one side wear when the pad was not fully contacted with the rub disk by other action surface pressure and pad action condition. It verified that the crack phenomenon fatigue was produced by brake thermal deformation because of decreasing the thickness by grinding to modify the non-uniformed wear of brake disk. It verified that the friction sound was produced by the friction phenomenon because of non-uniformed contact of lining and an alien substance with inner of the drum and lining braking by crack phenomenon with brake drum surface.

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.