• 제목/요약/키워드: inlet surface

검색결과 509건 처리시간 0.024초

Flow Characteristics of An Atmospheric Pressure Plasma Torch

  • Moon, Jang-H.;Kim, Youn-J.;Han, Jeon-G.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.69-73
    • /
    • 2003
  • The atmospheric pressure plasma is regarded as an effective method for surface treatments because it can reduce the period of process and doesn't need expensive vacuum apparatus. The performance of non-transferred plasma torches is significantly depended on jet flow characteristics out of the nozzle. In order to produce the high performance of a torch, the maximum discharge velocity near an annular gap in the torch should be maintained. Also, the compulsory swirl is being produced to gain the shape that can concentrate the plasma at the center of gas flow. In this work, the distribution of gas flow that goes out to atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric pressure plasma torch which can present the optimum design of the torch. Numerical analysis is carried out with various angles of an inlet flow velocity. Especially, three-dimensional model of the torch is investigated to estimate swirl effect. We also investigate the stabilization of plasma distribution. For analyzing the swirl in the plenum chamber and the flow distribution, FVM (finite volume method) and SIMPLE algorithm are used for solving the governing equations. The standard k-model is used for simulating the turbulence.

콘디밸트 건조공정 변수가 국산 골판고지로 제조한 라이너지의 물성에 미치는 영향 (Effects of the Process Variables of Condebelt Drying on Linerboard Properties Made from KOCC)

  • 이학래;윤혜정;정태민;김진두
    • 펄프종이기술
    • /
    • 제31권3호
    • /
    • pp.19-25
    • /
    • 1999
  • Effects of the process variable in Condebelt press drying including drying temperature, pressure , drying time, and moisture content of the sheets on the paper properties were examined. The experiment was performed with a static rig and Korean OCC was used as raw material. Significant improvement in sheet density, compression strength, tensile strength, surface smoothness ,etc. was obtained when condebelt drying was applied. Control of pressure and inlet dryness was found to be two most critical variables in improving sheet properties.

  • PDF

수평관 외벽에서 친수성 표면처리가 응축열전달에 미치는 영향 (Effects of Hydrophilic Surface Treatment on Condensation Heat Transfer at the Outside Wall of Horizontal Tube)

  • 황규대;박노성;강병하
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.533-540
    • /
    • 2000
  • Condensation heat transfer characteristics have been investigated experimentally when a water vapor is condensed on the outside of a horizontal copper tube in a condenser. This problem is of particular interest in the design of a LiBr-water absorption system. Hydrophilic surface modification was performed to increase the wettability on the copper tube. The optimum hydrophilic treatment condition using acethylene and nitrogen as reaction gas is also studied in detail. The results obtained indicate that the optimum reaction gas ratio of acethylene to nitrogen for hydrophilic surface modification was found to be 7 : 3 for the best condensation heat transfer. In the wide ranges of coolant inlet temperatures, and coolant mass flow rates, both the condensation heat transfer rate and the condensation heat transfer coefficient of a hydrophilic copper tube are increased substantially, compared with those of a conventional copper tube used in a condenser. It is also found that the condensation heat transfer enhancement by the hydrophilic surface modification still emains even after a hundred cycles of wet/dry processes.

  • PDF

Tungsten Carbide 표면에 코팅된 Re-Ir 박막의 표면 특성 (Surface Properties of Re-Ir Coating Thin Film on Tungsten Carbide Surface)

  • 이호식;천민우;박용필
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.219-223
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir films were prepared by multi-target sputtering with iridium, rhenium and chromium as the sources. Argon and nitrogen were inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having atomic percent of 3:7 and the Re-Ir thin films were formed with 240 nm thickness. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. Also, adhesion strength and coefficient friction of Re-Ir thin film were examined. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, abrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가 (Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping)

  • 손병후;김용기
    • 한국지열·수열에너지학회논문집
    • /
    • 제19권3호
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향 (Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner)

  • 문성원;민영봉;정태상
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

상용 CFD 프로그램을 사용한 베인형 관성분리기의 설계인자 영향 검토 (Study on the Effect of Design Parameters of the Vane Type Inertial Separator Using Commercial CFD Code)

  • 이답연;류재문
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.470-475
    • /
    • 2017
  • Since the intake air of gas turbine engine of marine purpose contains water particles, inertial separator for separating the air and water particles are provided. Saw type and wave type separator are now used to separate inflow water particle from the gas. In this paper, the design parameters of saw type separator are studied by numerical simulations. Using the commercial CFD program, Star-CCM+, Lagrangian-Eulerian method was used to perform the analysis of two phase flow of the mist in the air. This method solves Reynolds-Averaged Navier-Stokes equations in Eulerian framework for the continuous phase, while solves equation of motion for individual particles in Lagrangian framework. Lagrangian multiphase method was applied to monitor the particles of different sizes and shapes and to verify collision between particles by chasing particles. Water particles were injected through injectors located at the inlet of the separator and escape mode was used which assumes that the particles attached on the surface of inertial separator were removed from the simulation, effectively escaping the solution domain. Through the numerical computations with the inlet condition of constant water particle size in the wetness fraction of 85%, efficiency of eliminating the water particle and the pressure drop between the inlet and outlet were examined.

마산만의 해수유동에 관하여 (Variability of Current Velocities in Masan Inlet)

  • 김종화;장선덕;김삼곤
    • 한국수산과학회지
    • /
    • 제19권3호
    • /
    • pp.274-280
    • /
    • 1986
  • 대, 소조기에 마산만에서 연속관측한 자료를 사용하여 만구 단면의 유속 변동특성을 구명하기 위하여 net velocity와 RMS속도의 등양선 및 순 유출입량을 계산하여 검토하였다. 최강유속은 수도 중앙과 서부의 4m 이하의 표층에서 나타나고, 최대 유입속도 24cm/sec 최대 유출속도는 15 cm/sec이다. 최강유속 시간임에도 불구하고 4m 이심에서는 유속이 약하여 $0{\sim}2cm/sec$에 불과하다. 만구 단면의 가장자리의 상층에 역류가 존재한다. net velocity는 비가 오지 않은 대조기의 경우 유출유속은 만구단면 서부에서 나타나며, 유입유속은 단면 동부에서 나타난다. 비온 직후의 소조기에는 이와 정반대로 흐른다. RMS속도의 최대 세기는 대조기에 $11.3{\sim}15.0cm/sec$, 소조기에 $7{\sim}10.3cm/sec$로서 단면 서부의 표층에 있으며, 매 조석주기마다 거의 동일위치에서 계속 존재한다. 순 통과유량은 건기에 $-39.7m^3/sec$, 우기 $-170m^3/sec$로서 유출이 탁월하다. 항유성분은 건기에는 조석잔차류가 우세하지만, 소조기의 강우시에는 밀도류가 우세한 것으로 추리된다.

  • PDF

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

용수로상의 배수구조물계획에 대하여 -배수잠관을 중심으로- (On the Planning of Drainage Structures in Irrigation Channels. -Special Emphasis on the Drainage Inverted Siphon-)

  • 김철기
    • 한국농공학회지
    • /
    • 제12권4호
    • /
    • pp.2078-2083
    • /
    • 1970
  • The purpose of this study is to give the data neccesary for improving the planning of drainage structures, specially inverted siphons, in irrigation channels. With the samples of 15 drainage inlets, one drainage flume, 16 drainage inverted siphons and 6 drainage culverts in the 3 lines of irrigation channel under Chong-Won Irrigation Association, author abtained the following results. 1. It is presumed that design drainage discharge should be determined with some additional reserves, on the basis of the maximum rainfall intensity in local area and the size of drainage area on the topographical map, avoiding the way of eye measure. 2. Location of drainage inlet should be kept away from the place where topography can make lots of wash load, but when unavoidably allowing the inflow into irrigation channel, wash load outlet with even the purpose of drainage, or drainage flume in stead of drainage inlet should be taken account of. 3. It is presumed that drainage flume may be the structure which can perform its function from a structural point of view as far as topography permits. 4. Drainage inverted siphon should be avoided at any place as much as possible; a) In case that location of the siphon would be permitted only at paddy field, drainage area hauing the amount of discharge which requires more than 90cm in diameter could only be allowed. b) In this case, crest elevation of the tank of both inlet and outlet, at least, should not be lower than the surface level of paddy field. c) As far as topography and stratum permit, ratio of depth of outlet tank to head drop should be decreased as much as possible so that discharging efficiency of wash load could increase. d) In case of avoiding the setting of the siphon, irrigation aqueduct, irrigation inverted siphon, or drainage flume should be recommended in accordance with topography. 5. Discharging capability of wash load by drainage culvert appeared to depend hardly upon the diameter of the culvert, but greatly upon the location, specially near village, for there stones and dirts dumped may considerably be piled up. So, a counter plan for that is required.

  • PDF