• Title/Summary/Keyword: ink gloss

Search Result 53, Processing Time 0.021 seconds

The Effects of Base Papers Containing Nonwood Pulp on the Properties and Printability of Coated Papers(I) (비목재펄프를 이용한 도공원지의 특성이 도공지의 물성 및 인쇄적성에 미치는 영향(I))

  • 임현아;강진하;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.3
    • /
    • pp.39-47
    • /
    • 2000
  • This study was carried out to investigate the effect of the type of base papers containing Sw-BDP, HW-BDP and Bamboo-BKP on the properties and printabilities of coated papers. Also it was intended to evaluate the effect of coated paper prepared with anionic and amphoteric latex based coating color. The results obtained from this study were as follows. The fiber length of Bamboo-BKP was observed longer than that of the Hw-BKP and shorter than that of the Sw-BKP. This has effect on physical properties. Therfore the results of mea-suring physical properties were higher ratio of Sw-BKP physical properties tended to be slightly higher with the increase I the mixing ratio. Considering the optical properties of base papers the highest opacity was obtained in case of the Hw-BKP and the second appeared Bamboo-BKP. On the other hand smoothness roughness and air permeability of Bamboo-BKP were lower than those of wood pulp and the optical properties of coated papers tended to show the similar with those of base papers. The ink receptivity and print gloss of the coated papers for Bamboo-BKP were lower than those of wood pulp. As the mixing ratio of Sw-BKP was increased the properties and printabilities were improved slightly. Meanwhile amphoteric latex was improved the optical properties and printability of coated papers.

  • PDF

Effect of Mixing Ratio of Amphoteric and Anionic Latices on Print Quality of Coated Papers (라텍스의 혼합비율이 도공지 품질에 미치는 영향)

  • 강태근;박규재;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 1999
  • The binder plays important roles in determining the quality of pigment coating. In addition to its primary role of binding the pigment to the base paper, the binder performs several other important functions. The binder, also referred to as the adhesive, is the dominant in the aqueous phase of the formulation. Thus it plays a major role in determining viscosity, rheology, water release, and setting time for the coating. Latices based on styrene-butadiene dominate the market for synthetic paper coating binders. Consumption is high and is expected to increase further due to the present tendeyncy toward high-solids coating. The purpose of this study is understanding the impact of various parameters of latex(i.e. Tg, Particle size) affecting prontabilities and optical properties of the coated papers, as well as providing basic information on the use of amphoteric latex for improving print qualities of coated papers. Recently, amphoteric latices, Which are cationic at low pH's but turn anionic at high pH's have attracted interests of paper scientists and engineers. Therefore we investigated the effect of the Tg(glass transition temperature) and particle size of amphoteric latex on the coating qualities. We also studied the effect of mixing ratios (Amphoteric / Anionic)of latex on the coating qualities. Our results showed that Tg and particle size of amphoteric latex have to be controlled for optimizing coated paper qualities. The formulation consisting of 10 parts of amphoteric latex and 5 parts of anionic latex gave best results in ink receptivity, smoothness, air permeability, opacity and sheet gloss. If the results hold for the industrial paper coatings, the amount of expensive amphoteric latex can be reduced while achieving best available printing quality.

  • PDF

Material Retention: A Novel Approach to Performance of Pigment Coating Colors (물질 보류 : 안료 코팅 처리를 위한 새로운 시도)

  • McKenzie, Ken;Rutanen, Anne;Lehtovuori, Jukka;Ahtikari, Jaana;Piilola, Teuvo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.47-70
    • /
    • 2008
  • Cost efficiency is today the primary requirement in the paper and board industry. This has led therefore, to a greater preponderance of products with specifically designed functionality to take account of current industry needs. Continually increasing machine coating speeds together with these new coating colour components have put more emphasis on the importance of the correct rheology and water retention of the coating colours to achieve good runnability and end product quality. In the coating process, some penetration of the aqueous phase, to the base paper or board must occur to anchor the pre-coating to the base or the topcoat to the pre-coat. The aqueous phase acts as a vehicle not only for the binder, but also for the other components. If this water or material penetration is not controlled, there will be excessive material shift from the coating colour to the base, before immobilization of the coating colour will stop this migration. This can result in poor machine runnability, unstable system and uneven coating layer, impacting print quality. The performance of rheology modifiers or thickeners on the coating color have tended to be evaluated by the term, "water retention". This simple term is not sufficient to explain their performance changes during coating. In this paper we are introducing a new concept of "material retention", which takes note of the total composition of the coating colour material and therefore goes beyond the concept of only water retention. Controlled material retention leads to a more uniform z-directional distribution of coating colour components. The changes that can be made to z-directional uniformity will have positive effects on print quality as measured by surface strength, ink setting properties, print gloss, mottling tendency. Optical properties, such as light scattering, whiteness and light fastness delivery should also be improved. Additionally, controlled material retention minimizes changes to the coating colour with time in re-circulation giving less fluctuation in quality in the machine direction since it more closely resembles fresh coating for longer periods. Use of the material retention concept enables paper and board producers to have more stable runnability (i.e. lower process costs), improved end product quality (i.e. better performance of used chemicals) and/or optimized use of coating colour components (i.e. lower total formulation cost)

  • PDF