• Title/Summary/Keyword: injection-molding

Search Result 1,563, Processing Time 0.03 seconds

Convergent Case Study of Research and Education: Internet of Things Based Wireless Device Forming Research (R&E 융합적 사례: IoT 기반 무선 디바이스 성형연구)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • This study is a case study of the research study and education with high school students of natural sciences. Recent development of the Internet of Things (IoT) based on the subject of various studies exist. This study is one of the most portable communication devices of these infancy, yet students were easy to define the molding process of contacting a pager that can go along way in making research topics. We called a pager. Today, it is given a large and complex smart mobile communication devices that can be used for big data. Prior pagers are taught the meaning of the first mobile communication means in our lives were given device. The internal structure is relatively simple and is thought to function relatively simple, just suitable as a teaching practices of high school students with an interest in science and engineering universities. This study can see all of the mechanical, electronic information contents of the radio pager in a relatively simple analysis of the injection molding ONE CAVITY analysis. Furthermore, the students also rated good educational practices that give meaning to remind the convergence training on mass production and process automation.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Optimization Condition for Injection Molding of TV Speaker Grille Using CAE (CAE를 이용한 TV Speaker Grille 사출 성형의 최적화)

  • 김범호;장우진;김정훈;정지원;박영훈
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.855-865
    • /
    • 2001
  • The optimization condition of injection molding for a commercial product of TV speaker grille of A Company was induced using a CAE software of Moldflow. The flow and packing phase analysis was performed by using flow balance, runner balance, and the intermediate one by using the above two balances, which were used for controlling the amount of packing resins into the cavity, Later, the analysis performed by using the measured viscosity (local database) at various shear rates and the results were compared with the computer simulation using the standard database. Flow balance induced minimized weld line resulted in a better appearance and physical properties of the were line, but exhibited a disadvantage of large deformation and gas formation due to over-packing of the molten resin in the center of the speaker grille. Runner balance improved the disadvantage of the flow balance by controlling the amount of molten resin injected from the gate, however resulted reduced mechanical properties and poor appearance of the weld line. However, the modified method induced from the flow and runner balance improved the disadvantages by changing the runner size. In addition, the analyses based on the local database and the standard database were compared. Although the measured viscosity was slightly higher and the temperature distribution was broader than the standard database, no distinct difference was obtained from the analysis using the two different databases.

  • PDF

Magnetic Properties of Nylon 6 based Nd-Fe-Co-Zr-B Pellets for Injection Molding (사출성형용 Nylon 6계 Nd-Fe-Co-Zr-B 펠렛의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1993
  • Nylon 6 based magnetic pellets for injection molding were produced using plasma arc melt-spun $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ powders. Two sorts of bonded magnets made of two different sizes of particles ($38~75\;\mu\textrm{m}$ and $75~150\;\mu\textrm{m}$) were prepared to determine critical volume fraction of magnet powders, and the magnetic prop erties of the magnets were discussed as a function of density. For the nylon fi based Nd-Fe-Co-Zr-B pellets made of $38~75\;\mu\textrm{m}$ particles, the critical volume fraction of powders 0.7 was obtained with the pellet density which is 90% of theoretical density while the magnets of $75~150\;\mu\textrm{m}$ showed the density of 87% of the theoretical value with the same volume fraction. The nylon (i magnets with the addition of 0.5 wt. % silicon oil only exhibited the best magnetic properties to have $_{i}H_{c}=8.8\;kOe,\;B_{r}=5.1\;kG$ and $(BH)_{max}=5.2\;MGOe$ which are of world class. An empirical relationship in predicting the magnet density with a known fraction ($V_s$) of loading powders was obtained such as ${\rho}(g/cm^{3})=1.1+K.V_{s}$ where the K ranges over 5.3~5.6 be ing dependent upon the particle size loaded.

  • PDF

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

An Experimental Study on the Effect of Capillary Pressure on the Void Formation in Resin Transfer Molding Process (수지이동 성형공정에서 기공형성에 미치는 모세관압의 영향에 관한 실험적 연구)

  • 이종훈;김세훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 1998
  • Flow-induced voids during resin impregnation and poor fiber wetting give serious effects on the mechanical properties of composites in resin transfer molding process. In order to better understand the characteristics of resin flow and to investigate the mechanism of void formation, flow visualization experiment for the resin impregnation was carried out on plain weaving glass fiber mats using silicon oils with various viscosity values. The permeability and the capillary pressure for the fiber mats of different porosities were obtained by measuring the penetration length of the resin with time and with various injection pressure. At low porosity and low operating pressure, the capillary pressure played a significant role in impregnation process. Video-assisted microscopy was used in taking the magnified photograph of the flow front of the resin to investigate the effect of the capillary pressure on the void formation. The results showed that the voids were formed easily when the capillary pressure was relatively high. No voids were detected above the critical capillary number of 2.75$\times$$10^{-3}, and below the critical number the void content increased exponentially with decrease of the capillary number. The content of void formed was independent of the viscosity of the resin. For a given capillary number, the void content reduced with the lower porosity of the fiber mat.

  • PDF

Development of Mold for Coupling Parts for Drum Washing Machine (드럼세탁기용 커플링 부품 다이캐스팅 금형개발)

  • Park, Jong-Nam;Noh, Seung-Hee;Lee, Dong-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.482-489
    • /
    • 2020
  • This study conducted a prototype development and evaluation by performing die-casting mold design, mold manufacturing, and injection condition optimization based on flow and solidification analysis to meet the needs of the coupling parts produced by die casting. Through flow analysis, the injection conditions suitable for 100% filling in the cavity were found to be a molten metal temperature of 670 ℃, injection speed of 1.164 m/s, and filling pressure of 6.324~18.77 MPa. In addition, solidification close to 100 % occurred in all four cavities when the solidification rate was 69.47 %. A defect inspection on the surface and inside the product revealed defects, such as poor molding and pores. In addition, the dimensions of the injected product were within the target tolerance and showed good results. Through the feedback of the results of flow and solidification analysis, it was possible to optimize the mold design, and the injection optimization conditions were confirmed to be a total cycle time of approximately 6.5 seconds. Good quality carrier parts with an average surface hardness of approximately 45 mm from the gate measured at 97.48(Hv) could be produced.

Development of The Controller for Taking Out Injection Molded Body in Fast (고속 사출물 취출을 위한 제어기 개발)

  • Song, Hwa-Jung;Lew, Kyeung-Seek;Kim, Tong-Deak
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • Clients require easy to use of product and operating and industry safety according to the change of a market and a factory. For overcoming it, this paper developed controller of take-out robots that take high speed and superprecision and supplement a week point as use the system based on network. development controller classify teaching pendant and center server PC. Center server PC service the information about all process to supervisor. Teaching pendant is the bridge that service various faculties such as control, user recognition, metallic pattern operation to the user using injection molding. The controller development for taking out injection molded body classify software and hardware. The development of software is divided into three step which is application program, user interface and device driver. the simple device driver is not classified and included in application program. The hardware induce the touch panel and wireless network and construct the effective process control and internet connection. The inject ion cycle of existing system was five second but advanced system has the inner four cycle, process efficiency and product operation through wireless network.

Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin (열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Park, Gun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.