• 제목/요약/키워드: injection temperature

검색결과 1,943건 처리시간 0.044초

Micro Structure Fabrication Using Injection Molding Method (인젝션 몰딩 기술을 이용한 마이크로 구조물 성형)

  • Je T. J.;Shin B. S.;Chung S. W.;Cho J. W.;Park S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.253-259
    • /
    • 2002
  • Micro cell structures with high aspect ratio were fabricated by injection molding method. The mold inserts had dimension $1.9cm\times8.3cm$ composed of a lot of micro posts and were fabricated by LIGA process. The size of the micro posts was $157{\mu}m\times157{\mu}m\times500{\mu}m$ and the gaps between two adjacent posts were $50{\mu}m$. Using Polymethylmethacrylate (PMMA) injection molding was performed. The key experimental variables were temperature, pressure, and time. By controlling these, good shaped mim cell structures with $50{\mu}m$ in wall thickness and $500{\mu}m$ in depth were obtained. In order to understand micro molding mechanism, shape changes of molded PMMA were studied with experimental variables. And the durability of mold insert was investigated, too. The results show that the most important factor in molding processes was the mold temperature that is closely related to the filling of the melt into the micro cavity. And the holding time before cooling showed a great effect on the quality of molded PMMA.

  • PDF

Film Cooling Characteristics with Straight-Slot Coolant Injection by Numerical Study (직선슬롯 분사유동에 의한 막냉각의 열유동 특성에 대한 수치적 연구)

  • Rho, Suk-Man;Son, Chang-Ho;Lee, Geun-Sik
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.359-366
    • /
    • 2000
  • A numerical study has been performed for the 2-dimensional film cooling employed in the cooling of hot components such as gas turbines. The flow and heat transfer characteristics are numerically simulated using FLUENT software. Blowing ratios vary from 0.25 to 5.0 and coolant injection angles vary from $15^{\circ}\;to\;60^{\circ}\;in\;15^{\circ}$ increment. The result shows that, for all cases, there exists a blowing ratio which maximizes film cooling effect (measured by the distance from the slot exit to the downstream wall location at which temperature increases to 900 K) for a given injection angle. It is also observed that the film cooling effectiveness decreases when downstream wall is sunk or lifted. The simulation has been performed using both constant properties and temperature dependent variable properties. It is found that the cases with constant properties overestimate the film cooling effect considerably.

  • PDF

헬륨가스 분사에 의한 액체질소 냉각에 관한 연구

  • Chung, Yong-Gap;Cho, Nam-Gyeong;Kil, Kyeong-Seop;Song, Yi-Hwa;Kim, Yu;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using gas helium injection. This paper investigates the effect of helium injection on liquid nitrogen, which simulates the liquid oxygen. By using helium injection, subcooling of liquid nitrogen can be achieved and in the condition of v/vL≒0.8min-¹ approximately in four minutes subcooling temperature can be achieved.

  • PDF

A study of Sedimentation Processes of Saemangeum Reclamation( I ) - A study of Sedimentation Processes before Saemangeum Reclamation - (새만금간척 퇴적과정에 관한 연구( I ) -새만금간척 시행 전을 중심으로-)

  • Shin, Moon-Seup
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제44권4호
    • /
    • pp.62-74
    • /
    • 2002
  • The purpose of this study is to find the variation of sedimentation patterns before Saemangeum reclamation. Residual flow before Saemangeum reclamation was calculated diagnostically from the observed water temperature and salinity data in May 1992 by the Marine Development Institute of Kunsan National University and wind data which were obtained from spring 1969 through winter 1977 by the Gunsan Meteorological Observatory. Three dimensional movements of injected particles due to currents, turbulence and sinking velocity are tracked by the Euler-Lagrange method. Calculated sedimentation patterns of riverine materials are highly similar to the observed ones. When suspended sediments with the size of soil grain of 60 ${\mu}m$ are injected from the Mangyeong River, their dispersion range of sediment is about 25km for 24 hours after the injection, while about 35km for 72 hours after the injection. When suspended sediments with the size of soil grain of 200 ${\mu}m$ are injected, their dispersion range of sediment is about 18km for 24 hours after the injection, while about 21km for 72 hours after the injection.

A study on the weld-strength in two-shot molding (이중 사출시 발행하는 Weld-line의 강도 연구)

  • Jang, Min-Kyu;Kim, Chang-jin;Choi, Hea-Suck;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • 제9권2호
    • /
    • pp.30-33
    • /
    • 2015
  • In injection molding, many kinds of defects have occurred because of a characteristic of plastics injection molding. Weld line is one of the defects is formed when separated melt fronts recombine together during the mold filling stage. That is one of problems in injection molding. Weld lines in the appearance of plastics parts can deteriorate visible quality. And most importantly, the local mechanical strength in the weld line area can be significantly weaker. It could be one of the most problems for structural applications. In this study, the mold available two-shot-molding of same polymers have been designed, and a series of experiment about tensile strength in weld line area has been conducted using Taguchi's design of experiment to optimize injection molding conditions decreasing of weld strength and find out a factors affected weld strength in two-shot- molding.

  • PDF

Development of a precision machining process for the outer cylinder of vacuum roll for film transfer (실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구)

  • Hyo-Eun Lee;Jong-Sun Kim
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

A Study on the Optimal Conditions according to the Content of the Glass Fiber in the Resin-Automotive Motor Housing Application

  • Jin-Gu Kang;Gang-hyun Oh;Kyung-a Kim
    • Design & Manufacturing
    • /
    • 제18권3호
    • /
    • pp.9-14
    • /
    • 2024
  • Among the various plastic polymer molding methods, thermoplastic resins are most commonly used for mass production due to their suitability for high-volume manufacturing. However, recently, thermosetting resins have been utilized depending on product design and functionality, necessitating appropriate mold design and injection conditions to achieve suitable molded products. Therefore, resin selection must be considered not only in terms of product design but also based on functionality, taking into account the physical and mechanical properties of the resin. Additionally, since the flow characteristics of the resin are critical in injection molding, molding conditions should be set according to the thermal, physical, and rheological properties of the resin.This study focuses on the effects of filler content (glass fiber) in thermosetting fiber-reinforced plastics (FRP), specifically Bulk Molding Compound (BMC) resin, which is crucial for thermal deformation in automotive motor housing products. The resins used in this study include Generic BMC1 resin, BMC1 with 15% glass fiber, and BMC1 with 30% glass fiber. The research employs CAE (Computer-Aided Engineering) to investigate strain under basic conditions for the BMC resin and the strain variations with the addition of glass fiber. It also examines the impact of filler content on injection molding conditions, specifically mold temperature and curing time. Experimental results indicate that mold temperature has the most significant effect among the injection conditions, while the impact of curing time was relatively minor.

Analysis of Cavity Pressure and Dimension of Molded Part According to V/P Switchover Position in Injection Molding

  • Cho, Jung Hwan;Kwon, Soon Yong;Roh, Hyung Jin;Cho, Sung Hwan;Kim, Su Yeon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제52권4호
    • /
    • pp.309-316
    • /
    • 2017
  • In injection molding, the quality of an injection molded product varies greatly depending on the molding conditions. Many researche studies have been conducted on the quality analysis of molded parts according to the molding conditions such as injection pressure, injection temperature, and packing pressure. However, there have not been many studies on the V/P switchover timing. It is known that when a large pressure is applied to a cavity in the packing phase, the cavity pressure is most affected by the packing pressure. In addition, depending on the position (timing) of the packing pressure, it can have a direct influence on quality based on the shrinkage and dimensions of the molded parts. In this study, the change in pressure profile in the cavity according to the V/P switchover position is confirmed. A CAE analysis program (Moldflow) was used to simulate and analyze two models using the PC and PBT materials. In order to compare these results with the actual injection molding results, injection molding was performed for each V/P switchover position, and the correlation between simulation and experiment, especially for the shrinkage of molded parts, was evaluated.

Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition (증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구)

  • Cho, Wonkyu;Park, Youngsoo;Bae, Choongsik;Yu, Jun;Kim, Youngho
    • Journal of ILASS-Korea
    • /
    • 제20권1호
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.

A Study of Core Water Injection Effect Influencing Plume in 75 tf $1^{st}$ Stage Liquid Propellant Rocket Engine Ground Test (75톤 1단 액체로켓엔진 지상시험에서 중앙 물분사가 후류에 미치는 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.129-135
    • /
    • 2011
  • A study of efficient plume cooling by core water injection type was performed by computational fluid dynamics. A side injection type is well known, on the contrary, a core injection type is not well known. In order to figure out the characteristics of core injection type, several calculations were performed by computational fluid dynamics along various mass flow rates and locations of water injection. On the basis of analysis it was the adequate cooling condition that water mass flow rate to total mass flow rate was two times at least and location of water injections was L/De=1.2.