• Title/Summary/Keyword: injection temperature

Search Result 1,934, Processing Time 0.028 seconds

Improvement in Catalytic NOx Reduction by Using Dielectric Barrier Discharge (유전체장벽방전을 이용한 촉매공정의 질소산화물 저감성능 향상)

  • Mok, Young Sun;Nam, Chang-Mo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The ozone produced by a dielectric barrier discharge device was injected into the exhaust gas to oxidize a part of NO to $NO_2$, and then the exhaust gas containing the mixture of NO and $NO_2$ was further treated in a catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added to the exhaust gas. The experiments were primarily concerned with the effect of reaction temperature on the catalytic $NO_x$ reduction at various $NO_2$ contents. The increase in the $NO_2$ content by the ozone injection remarkably improved the performance of the catalytic $NO_x$ reduction, especially at low temperatures.

  • PDF

Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System (후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석)

  • Park, Cheol-Woong;Choi, Young;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

Failure Analysis and Weibull Statistical Analysis according to Impact Test of the Angular Pin for Injection Molding Machines (사출금형기계용 앵귤러핀의 충격시험에 따른 파손분석과 와이블 통계 해석)

  • Kim, Cheol-Su;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, failure analysis of the angular pin for molding machines to aluminum component molding was carried out. SM45C steel was used for the angular pin, it was surface hardened by the induction surface hardening heat treatment. The cross section of damaged angular pin was observed, and micro Vickers hardness value from the fractured part was measured. Brittle fracture was occurred from the fracture surface of angular pin, therefore, impact toughness value was evaluated by V-notch Charpy impact test. It was confirmed that the impact absorption energy was high when was tempered at a high temperature for a long time, and the toughness was slightly increased. Also, 2-parameter Weibull statistical analysis was investigated in order to evaluate the reliability of the measured micro Vickers hardness values and absorbed energy. The micro Vickers hardness and absorbed energy well followed a two-parameter Weibull probability distribution, respectively. The reverse design against angular pin was proposed as possible by using test results.

Effects of the Membrane Materials on the Filtration Characteristic in the Membrane Separation-activated Sludge Process (막 재질에 따른 막분리활성오니법의 여과 특성)

  • Kim, Hyung-Soo;Cho, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.42-49
    • /
    • 1998
  • By checking the variations of the raw water quality and MLSS, the effects of the membrane materials on permeable flux and quality of the treated water were investigated in this study. Due to the stability for high variations of MLSS, tubular type membranes were selected. Polysulfone group membranes and polyamide group membranes were tested. The crossflow operation mode was adapted, because membrane fouling problems could be easily controlled by adjusting the linear velocity. Due to the high concentration of the raw water, polyamide group membranes were originally expected to achieve two times higher permeable fluxes. However, difference was only approximately $20l/m^2{\cdot}h$ at $3kgf/cm^2$. It might be resulted from the high concentration of organic materials in the effluent of the RBC process. For the quality of the treated water, polyamide group membranes were slightly less effective. It might be resulted from the fact that polysulfone group membranes had more adsorptive capacities for the organic materials. The effects of temperature on the permeable flux were found to be significant. Despite of the irregular injection of raw water, the quality of the treated water was kept stable.

  • PDF

A Preliminary Analysis of Large Loss-of-Coolant Induced by Emergency Core Coolant Pipe Break in CANDU-600 Nuclear Power Plant

  • Ion, Robert-Aurelian;Cho, Yong-Jin;Kim, In-Goo;Kim, Kyun-Tae;Lee, Jong-In
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.435-440
    • /
    • 1996
  • Large Loss-of-Coolant Accidents analyzed in Final Safety Analysis Reports are usually covered by Reactor Inlet Header. Reactor Outlet Header and Primary Pump Suction breaks as representative cases. In this study we analyze the total (guillotine) break of an Emergency Core Cooling System (ECCS) pipe located at the ECCS injection point into the Primary Heat Transport System (PHTS). It was expected that thermal-hydraulic behaviors in the PHT and ECC systems are different from those of a Reactor Inlet Header break, having an equivalent break size. The main purpose of this study is to get insights on the differences occurred between the two cases and to assess these differences from the phenomenon behavior point of view. It was also investigated whether the ECCS line break analysis results could be covered by header break analysis results. The study reveals that as the intact loop has almost the same behavior in both analyzed cases. broken loop behavior is different mostly regarding sheath temperature in the critical core pass and pressure decrease in the broken Reactor Inlet Header. Differences are also met in the ECCS behavior and in event sequences timings.

  • PDF

Effect of the Brain Death on Hemodynamic Changes and Myocardial Damages in Canine Brain Death Model -Hemodynamic and Electrocardiographic Changes in the Brain Death Model Caused by Sudden Increase of Intracranial Pressure- (잡견을 이용한 실험적 뇌사모델에서 뇌사가 혈역학적 변화와 심근손상에 미치는 영향 -제1보;급격한 뇌압의 상승에 의한 뇌사모델에서의 혈역학적 및 심전도학적 변화-)

  • 조명찬
    • Journal of Chest Surgery
    • /
    • v.28 no.5
    • /
    • pp.437-442
    • /
    • 1995
  • We developed an experimental model of brain death using dogs. Brain death was caused by increasing the intracranial pressure[ICP suddenly by injecting saline to an epidural Foley catheter in five female mongrel dogs[weight, 20-25Kg .Hemodynamic and electrocardiographic changes were evaluated continuously during the process of brain death. 1. Abrupt rise of ICP after each injection of saline followed by a rapid decline to a new steady-state level within 15 minutes and the average volume required to induce brain death was 7.6$\pm$0.8ml.2. Body temperature, heart rate, mean pulmonary arterial pressure, left ventricular[LV enddiastolic pressure and cardiac output was not changed significantly during the process of brain death, but there was an increasing tendency.3. Mean arterial pressure and LV maximum +dP/dt increased significantly at the time of brain death.4. Hemodynamic collapse was developed within 140 minutes after brain death.5. Marked sinus bradycardia followed by junctional rhythm was seen in two dogs and frequent VPB`s with ventricular tachycardia was observed in one dog at the time of brain death. Hyperdynamic state develops and arrhythmia appears frequently at the time of brain death. Studies on the effects of brain death on myocardium and its pathophysiologic mechanism should be followed in the near future.

  • PDF

Self-Assembled Chiral Structures of Discoid Organic Molecule on Au(111)

  • Kim, Ji-Hoon;Khang, Se-Jong;Kwon, Young-Kyun;Park, Yongsup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.280-280
    • /
    • 2013
  • Using both experimentaland theoretical methods, we have investigated the structural and electronic properties of self-assembled two-dimensional organic molecule (hexaaza-triphenylene-hexacarbonitrile, HATCN), which is used as an efficient OLED hole injection material, on Au(111) surfaces. Low-temperature scanning tunneling microscope (STM) measurements revealed that self-assembled linear and hexagonal porous structures are formed at atomic steps and terraces of Au(111), respectively. We also found that the hexagonal porous structure have chirality and forms only small (<1,000 nm2) phase-separated chiral domains that can easily change their chiral phase in subsequence STM images at 80 K. To explain these observations, we calculated the molecular-molecular and molecule-surface interaction energies by using first-principles density functional theory method. We found that the change of their chiral phase resulted from the competition between the two energies. These results have not only verified our experimental observations, but also revealed the delicate balance between different interactions that caused the self-assembed structures at the surface.

  • PDF

Development of a Microplasma Source under Atmospheric Pressure using an External Ballast Capacitor (방전에너지 제어용 외부 커패시터를 이용한 대기압 마이크로 플라즈마 소스 개발)

  • Ha, Chang-Seung;Lee, Je-Hyun;Son, Eui-Jeong;Park, Cha-Soo;Lee, Ho-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.31-38
    • /
    • 2013
  • A pulse driven atmospheric plasma jet controlled by external ballast capacitor is developed. Unlike the most commonly use DBD sources, the proposed device utilizes bare metal electrode. The discharge energy per pulse can precisely be determined by changing voltage and capacitance of the ballast capacitor. It is shown that the device can provide wide range of plasma, from stable glow mode to near arc state. Current-voltage waveforms, optical emission spectra and discharge images are investigated as a function of an injection energy. The OES shows that He and oxygen lines are increased as a function of the external ballast capacitor. Ozone and rotational temperature have similar tendency with a power consumption. The feeding gas is He and the applied DC voltage is from 400V to 800V when the gap distance is $500{\mu}m$.

Finite Element Analysis of an EMC Module for Selecting Epoxy (적합한 Epoxy 선정을 위한 EMC 모듈의 유한요소해석)

  • Lee, Joon-Seong;Hong, Hee-Rok;Jo, Gye-Hyeon;Park, Dong-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6419-6424
    • /
    • 2014
  • The use of the PMP (Protection Module Package) was proposed as a solution for the shorter battery lifetime. The PMP means that a protection circuit consists of a semiconductor single. In this study, basic research was carried out to select a suitable epoxy material of the EMC module through finite element analysis. First, the stress on the external force was compared by the flexural strength analysis. In the following thermal analysis, the temperature change of the EMC module and the internal part was compared using the calculated heating value. Finally, the filling ratio was compared with the injection of the melting epoxy in the EMC module.

Numerical study on the effects of air staging on combustion in the three air stage heavy oil fired combustion system (삼단중유연소 버너에서 다단비가 연소현상에 미치는 영향에 대한 수치 연구)

  • Lee, Sung-Soo;Kim, Hyuck-Ju;Park, Byoung-Sik;Kim, Jong-Jin;Choi, Gyu-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.235-241
    • /
    • 2004
  • Computations were performed to investigate the effects of air staging on combustion in three stage heavy-oil fired combustion burner. The burner was designed for 3 MW. Different amounts of air are introduced into each 3 three stages by means of each dampers. The goal of the study is to understand combustion phenomena according to each air stage mass ratios through CFD. Air flow rates at three inlets are adjusted by dampers inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. In case of cold flows, only longitudinal velocities arc considered, On the other hand, flow, temperature and NOx generations are taken into account for reactive flows. Simple parametric study was conducted by setting 1'st air stage mass ratio as a parameter. And an optimal operation condition was found. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.

  • PDF