• Title/Summary/Keyword: injection molded

Search Result 493, Processing Time 0.025 seconds

Shrinkage in Injection molded Part for Operational Conditions and Resins (성형조건과 수지의 종류에 따른 사출 성형품의 성형 수축)

  • 모정혁;김현진;류민영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.363-370
    • /
    • 2003
  • Shrinkage of injection molded parts is different form operational conditions of injection molding such as injection temperature, injection pressure and mold temperature, and mold design such as gate size. It is also various for different resins which have crystalline structure or not. In this study part shrinkage was investigated for various operational condition and resins; PBT for crystalline polymer, and PC and PMMA for amorphous polymer was used in experiment. Crystalline polymer shows higher part shrinkage by about three times than amorphous polymer. Part shrinkage increased as injection temperature and mold temperature increased and injection pressure decreased. Part shrinkage decreased as gate size increased since the pressure delivery is mush easier for large gate size. Part shrinkage according to the gate location was that the position in the part with close to the gate showed large shrinkage and this phenomenon might be occurred by residual stress.

  • PDF

A Study on the Variable Condition Debinding Process in Supercritical CO2 for Removing Binder from Thick Ceramic Injection Molded Parts (두꺼운 세라믹 사출성형체로부터 효율적인 결합제 제거를 위한 초임계 CO2 가변조건 탈지공정 연구)

  • Kim, Hyung-Kun;Yim, Joon-Hyuk;Kim, Hyung-Soo;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • The purpose of this study is to remove paraffin wax binder effectively from powder injection molded part using supercritical fluids in powder injection molding process. For a thin powder injection molded part about 1-2 mm thickness, paraffin wax binder can be removed rapidly without any defect by traditional supercritical extraction process which has fixed high temperature and pressure condition. But, for a thick powder injection molded part, there are limitations in removing paraffin wax binder by the fixed high process condition because crack occurs at the beginning step. Therefore, here we studied variable condition debinding process that starts with mild process condition at the beginning step and then increase the process conditions simultaneously at each step. To find out the initial process condition that has the highest extraction yield without any defect for each sample thickness, we investigated various supercritical debinding conditions using 1-4 mm thickness ceramic injection molded sample. By using the variable condition debinding process that starts with the initial process condition at the first step and then increasing process conditions simultaneously at each step (temperature from 333.15 to 343.15 K, pressure from 12 to 27 MPa, and $CO_2$ flow rate from 1.5 to 10 L/min), over 95% of paraffin wax binder was removed from the 4 mm thick (10 mm diameter) ceramic injection molded disk samples within 5 hours.

Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results - (사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

A Study on the Warpage in Injection Molded Part for Various Rib Design and Reinforced Resins (보강 수지의 종류와 사출성형품의 리브 설계에 따른 휨의 연구)

  • Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • Most of the plastics products have been manufactured by injection molding. Molding trouble in injection-molded parts is caused by changing a molding product and molding process condition, etc. In this study, warpage in the injection molded part have been studied. Specimens are rectangular flat shape with and without ribs. Non-crystalline resins (ABS+GF30%, PC+GF30%) and crystalline resins (PP+GF30%, PA66+GF30%) were used for material. Flat shape ribs showed higher warpage than flat shape without rib by 10 to 41%. the specimens with ribs that are located parallel to flow direction has higher warpage than the specimens with rib that are located perpendicular to flow direction by 11 to 50%. crystalline resins have higher warpage than non-crystalline resins by 22 to 78%. Warpage decreases as packing time increases as injection temperature increases.

  • PDF

Optimization of injection molding process for plastic keypad on mobile phone (휴대폰 키패드의 최적 사출성형 공정 설계)

  • Park, Eun-Seo;Shin, Sang-Eun;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • Deformation frequently occurring in injection molded products is a phenomenon displayed due to uneven shrinkage distribution and orientation of the whole molded product. Shrinkage deformation is a very serious problem because it causes deformation of the molded article and shortens the performance of the product. In this paper, we are focusing on the warpage of keypad in mobile phone. In other words, we focused on minimizing keypad deformation. In the study, the Taguchi method was applied to find the injection molding conditions that minimize the deformation of the keypad. In the case of this keypad, the main factors influencing the shrinkage deformation were predicted as the melting temperature, coolant temperature and cooling time. In addition, the optimum molding conditions were obtained and the shrinkage strain was minimized. Experiments for the Taguchi method and verification of optimal molding conditions were performed using an injection molding analysis program.

A Study on the Formation of Gate Mark in Injection Molding (사출성형에서 Gate Mark의 형성에 관한 연구)

  • Kim, J.M.;Kim, D.W.;Hwang, S.J.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.628-632
    • /
    • 2006
  • The gate mark in injection molded part is a kind of surface defects. The formation of gate mark has been investigated in this study. SEM photographs and surface roughness have been examined to study gate mark. The specimens were molded for various injection conditions, such as injection temperature, mold temperature, and injection speed. Gate diameter and mold surface condition were also molding variables. Gate marks were reduced as injection speed and mold temperature increased. Gate diameter and injection temperature did not affect the gate marks. No etching of mold surface showed no gate marks for any molding conditions.

A Study on the Low Pressure Injection Molding of Automotive Seat-back Cover (자동차용 시트백 커버의 저압사출성형에 관한 연구)

  • Ko, Byung-Doo;Ham, Kyoung-Chun;Jang, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.100-106
    • /
    • 2008
  • In this paper, the injection molding process of automotive seat-back cover is analyzed in terms of simulation and of experiment. FE analysis was used to obtain molding conditions such as injection pressure, filling pattern, packing, shrinkage. Vacuum system for low pressure injection molding is developed in the experiment. Low pressure injection molded parts have been compared with conventional molded parts in terms of molding quality and mechanical properties. Based on the results, good product and the productivity improvement can be obtained in low pressure injection molding for automotive seat-back cover.

A Study on The Change of Birefringence Structure in Injection and Injection/compression Molded Products (사출 및 사출/압축 성형품 내에서의 복굴절 구조 변화에 관한 연구)

  • Min, I.K.;Lee, K.B.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.296-304
    • /
    • 2010
  • It is still needed to study the effect of process conditions on the final properties of injection-molded parts for producing precision optical products. Especially, the optical anisotropy, i.e., birefringence, is a significant factor to affect the function of many optical components. In the present study we have focused on the effect of holding and compression processes on the birefringence remaining in the transparent disc by examining the gap-wise distribution of birefringence and extinction angle. As a result, two extra birefringence and extinction peaks near the center in thickness direction showed the effect of holding pressure, which came from the flow in packing stage. However, more uniform birefringence distribution than injection-only cases could be found in injection/compression cases. Depends on the process condition even the flow reversal could be found from the distribution of extinction angle. Finally, graphical representation of optical indicatrix was added for better understanding the final structure of injection-only and injection/compression cases.

Molding Design Factors Optimization for Maximizing Shrinkage Uniformity of Injection Molded Part using Design of Experiments (실험계획법을 이용한 사출품의 균일 수축을 위한 성형 설계인자의 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Yin, Jeong-Je;Lee, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.70-76
    • /
    • 2011
  • This paper presents an optimization procedure for reducing warpage of injection molded part by using a volumetric shrinkage deviation as an objective function. A design of experiments based on orthogonal arrays was used in the optimization procedure, and the entire optimization was performed through a two stage process - a preliminary experimentation and a principal experimentation. Proposed optimization method was applied to the design of a CPU-base part in computer. With the moderate number of experiments, an optimal molding condition for uniform distribution of volumetric shrinkage was obtained, as a result, the warpage of the molded part was significantly reduced.

Simulation Study of Injection-Molded Light Guide Plates for Improving Luminance Uniformity Based on the Measured Replication Quality of Micro-Patterns for LED TV Backlight

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.159-164
    • /
    • 2015
  • In the injection-molded light guide plate the replication quality, i.e. the reproduction accuracy, of micro-patterns should be high and uniform over the entire surface area. However technical difficulty in meeting the necessary replication quality arises as the plate size becomes large for TV applications. We propose a simulation technique to optimize the distribution of micro-patterns on a 55-inch injection molded light guide plate considering non-ideal replication quality of micro-patterns. The luminance uniformity could be improved by more than 16% by optimizing the pattern distribution in spite of the same replication quality.