• Title/Summary/Keyword: injection mold design

Search Result 478, Processing Time 0.026 seconds

A Theoretical Study for the Filling Balance of the Family Mold Using Variable-Runner System (가변 러너 시스템을 이용한 패밀리 금형의 충전밸런스에 관한 이론적 연구)

  • Choi, Kwon-Il;Park, Hyung-Pil;Cha, Baeg-Soon;Rhee, Byung-Ohk;Koo, Bon-Heung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.275-278
    • /
    • 2007
  • In family mold, defects are frequently occurred by an excessive packing the smaller volume cavity during molding. Although runner size could be optimized by CAE analysis or experimental data, the filling imbalance is hardly avoided in the actual injection molding process by various means. Before this study, we developed a variable-runner system for balancing the cavity-filling for three resins (ABS, LDPE, and PA66) in the family-mold, and examined the effect of cross-sectional area reduction of a runner in the system. In this study, we examined the conditions of the pressure and temperature in the system with a CAE analysis. We also analyzed the influence of the rheological characteristic of resins to the balancing-capability of the system in order to help mold designers easily adopt the variable-runner system to their design.

  • PDF

Optimization of Gate and Process Design Factors for Injection Molding of Automotive Door Cover Housing (자동차 도어용 커버 하우징의 사출성형을 위한 게이트 및 공정 설계인자의 최적화)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.84-90
    • /
    • 2022
  • The purpose of the cover housing component of a car door is to protect the terminals of the plug housing that connects the electric control unit on the door side to the car body. Therefore, for a smooth assembly with the plug housing and to prevent contaminants from penetrating into the gaps that occur after assembly, the warpage of the cover housing should be minimized. In this study, to minimize the warpage of the cover housing, optimization was performed for design factors related to the mold and processes based on the injection molding simulation. These design factors include gate location, gate diameter, injection time, resin temperature, mold temperature, and packing pressure. To optimize the design factors, Taguchi's approach to the design of experiments was adopted. The optimal combination of the design factors and levels that minimize warpage was predicted through L18-orthogonal array experiments and main effects analysis. Moreover, the warpage under the optimal design was estimated by the additive model, and it was confirmed through the simulation experiment that the estimated result was quite consistent with the experimental result. Additionally, it was found that the warpage under the optimal design was significantly improved compared to both the warpage under the initial design and the best warpage among the orthogonal array experimental results, which numerically decreased by 36.9% and 23.4%, respectively.

In-Plane Deformation Analysis and Design of Experiments Approach for Injection Molding of Light Guide Plate for LCDs

  • Lee Ho-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.51-56
    • /
    • 2006
  • A computer code was developed to simulate both the thermal stresses introduced during the post-filling stage and the in-plane deformation after ejection process by finite element method based on the plane stress theory. The computer simulation was applied to the mold design of a 2 inch light guide plate (LGP) for thin film transistor (TFT)-liquid crystal displays (LCD). With injection molding experiments based on the design of experiments (DOE) technique, the influences of the processing conditions in injection molding on brightness and uniformity of the LGP were investigated, and the optimal processing parameters were selected to increase the brightness and uniformity. The verification experiment showed that the brightness and uniformity of the LGP were increased dramatically under the selected optimal processing conditions.

A Study on Design Analysis for Injection-Molded Gear (CAE기술응용 사출성형기어 설계에 관한 연구)

  • 허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.135-138
    • /
    • 2001
  • The design and manufacture of injection molded Sear with desired Properties is a costly process dominated by empiricism including the interactive modification of prototype toolings. In this paper, an interactive computer-based design system for injection molded gear is developed in order to realize the concept of rational design for the productivity and quality of mold making of a small plastic gear. The knowledge-based synthesis system being developed in this paper combines a rule-based expert system with analytical process simulation programs in a synergistical manner. Quick and logical evaluations on the design of injection molded gear can be made on the scientific analysis and the accumulated experts' knowledge.

A Change of Foaming Magnitude as Thickness of Mold System (금형 시스템의 살두께에 대한 발포 배율의 변화)

  • Hwang, Yun-Dong;Cha, Seong-Un;Yun, Jae-Dong;Kim, Ji-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.186-191
    • /
    • 2000
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980's to save a quantity of material and increase mechanical properties. The information about the thickness of cavity plays an important role in appling microcellular foaming process to the conventional injection molding process. It is essential to make an effective foam. The goal of this research is to measure the relation between the change of cavity's thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of cavity is mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. The proposed foaming magnitude changes data of polymer in relation to mold system can be applied in more extensive injection molding process, such as optimum design of mold for microcellular foaming process.

  • PDF

A Study on Injection Mold Design Using Approximation Optimization (근사 최적화 방법을 이용한 사출금형 설계에 관한 연구)

  • Byon, Sung-Kwang;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.55-60
    • /
    • 2020
  • The injection molding technique is a processing method widely used for the production of plastic parts. In this study, the gate position, gate size, packing time, and melt temperature were optimized to minimize both the stress and deformation that occur during the injection molding process of medical suction device components. We used a central composite design and Latin hypercube sampling to acquire the data and adopted the response surface method as an approximation method. The efficiency of the optimization of the injection molding problem was determined by comparing the results of a genetic algorithm, sequential quadratic programming, and a non-dominant classification genetic algorithm.

A study on CAE and injection molding of automotive thick-walled light guide with micro-optical patterns (마이크로 광학 패턴이 있는 차량용 후육 라이트 가이드의 CAE 및 사출성형에 관한 기초연구)

  • Dong-Won Lee;Jong-Su Kim;Hyeon-Hwa Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2023
  • In this study, basic research was conducted on manufacturing technology of thick-walled light guide a component that controls the light source of automobile lamps. As a preliminary study for manufacturing the final injection molded parts, a model for analyzing the influence of micro patterns on light guides is presented. The optical characteristics of the light guide were analyzed according to the change of the curvature radius of the micro-optical pattern, and the injection molding characteristics of the light guide according to the change of injection molding conditions were analytically evaluated. It was confirmed that the luminance uniformity improves as the R value decreases for changes in the micro-pattern R value, but it was confirmed that there are technical limitations in actual injection mold core processing and high-replication injection molding. Injection molding analysis showed that cooling channel design is very important compared to general injection molding due to thick-wall characteristics and thickness variation. It was also confirmed that the cooling channel has a great influence on the cycle time and birefringence result due to residual stress. As a result of analyzing the influence of filling time, holding condition, and cooling on shrinkage, it was found that the cooling water temperature has a significant effect on the shrinkage of ultra-fine light guide parts, and the holding condition also has a significant effect.

Case Study for Developing Automobile Part (Steering Wheel) using Vacuum Die-Casting Mold (진공다이캐스팅 공법을 이용한 자동차용 조향장치 개발에 대한 사례연구)

  • Kwon, Hong-Kyu;Jang, Moo-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.196-203
    • /
    • 2012
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation between injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects were differentiated according to the various relations of the above conditions. High-qualified products can be manufactured as those defects are controled by the proper modifications or the changes of die casting mold with the conditions. In this research, the proper manufacturing method was derived intensively for reducing the defect of the internal porosity of steering wheel housing which is very complicated to achieve a good mold design. The method was also derived for minimizing and for guaranteeing the product quality through the analysis of the casting problem and the deduction of alternative plans.

An Experimental Study on the Warpage of a Film Insert Molded Plate (필름 인서트 사출성형 평판의 휨 변형에 관한 실험적 연구)

  • Yoo, Y.G.;Lee, H.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.30-35
    • /
    • 2012
  • FIM(Film Insert Molding) is an innovative method of producing decorated parts for a wide range of products. Because it requires fewer steps when compared to conventional production methods, the time and cost of manufacturing high quality components can be reduced considerably. In this paper, the effects of processing conditions on the warpage of film-insert molded plate were investigated by using a design of experiments. The dominant factors affecting warpage were mold temperature and holding pressure. Warpage increased with the temperature difference between stationary mold and fixed one. Even when the mold temperature difference was zero, the plate with a film was bent after ejection such that the film side protruded. As holding pressure increased, warpage decreased significantly. In addition warpage increased with time increment for the film-insert molded plates.

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.